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Abstract

This paper develops a search-theoretic model of the labor market in
which heterogeneous firms compete directly to hire unemployed workers.
This process of direct competition simultaneously determines both the ex-
pected match output and workers’effective bargaining power. The frame-
work delivers a unified aggregate production and matching technology, and
firms are paid both productivity rents and matching rents. Both the cur-
vature of the endogenous production technology and the distribution of
output are influenced by properties of the underlying firm productivity
distribution, particularly the tail index (a measure of tail fatness). For
example, if the firm productivity distribution is Pareto, the labor share is
decreasing in its tail index if the value of matching rents is not too high.
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1 Introduction

A standard approach in macroeconomics is to assume a specific aggregate

production function and competitive factor markets. The distribution of output

between workers and firms is determined by the production technology since fac-

tors are paid their marginal products. In search-theoretic models, by contrast,

there is a frictional process of matching workers and firms and wage determination

is explicitly modelled. In Diamond-Mortensen-Pissarides (DMP) models, for ex-

ample, wages are determined by generalized Nash bargaining and the distribution

of output is governed by workers’bargaining power —a parameter.1

This paper develops a framework that incorporates frictional unemployment

and non-competitive wage determination —as in the search-theoretic approach

—but features a tractable aggregate production and matching function. In this

sense, the paper is similar in spirit to Lagos (2006), which derives an aggregate

production function in a DMP style search-theoretic model. The key novelty of

the present model —in contrast to models such as Lagos (2006) featuring Nash

bargained wages — is that both the production and the distribution of output

are determined by a process of direct competition between firms to hire workers.

This unified approach to production, matching, and distribution enables us to

examine how changes in the model’s primitives simultaneously affect aggregate

outcomes such as unemployment, output per match, factor income shares, and

the endogenous effective bargaining power of workers.

In the model, workers are "sellers" of labor and firms are "buyers" that com-

pete to hire workers. Similarly to the theory of competing auctions developed

in Peters and Severinov (1997), workers hold second-price auctions with reserva-

tion wages ("reserve prices") and firms pay an entry cost to approach workers.2

After approaching a worker, firms independently draw match-specific productiv-

ities ("valuations") from a common distribution. The highest productivity firm

targeting a worker hires that worker and pays a wage equal to the second-highest

productivity (or the reservation wage if no other firms compete).

This process of direct competition delivers three key outcomes: production,

matching, and distribution. First, it endogenizes the average match output:

greater competition between firms increases the expected match output because

1See Pissarides (2000) and Mortensen and Pissarides (1994).
2Peters and Severinov (1997) builds on Wolinsky (1988) and McAfee (1993).
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workers can be more selective. Second, it endogenizes the unemployment rate:

greater competition increases the matching probability for workers. Third, it

endogenizes the distribution of output between workers and firms: greater com-

petition between firms to hire workers increases labor’s income share and the

effective bargaining power of workers.

In the spirit of Houthakker (1955), Jones (2005), and Lagos (2006), the aggre-

gate production function that arises in this environment inherits its properties

from a primitive underlying distribution of firm productivities. In the present

model, however, production and matching are interdependent processes and we

therefore obtain not a standard aggregate production function but a unified aggre-

gate production and matching function that incorporates the matching frictions.

Moreover, since wages are determined through an auction mechanism, both the

production technology and the distribution of output are influenced by the dis-

tribution of firm productivities. In the limit as unemployment goes to zero, the

output elasticity with respect to vacancies —a measure of the curvature of the

production technology —and both the labor share and workers’effective bargain-

ing power — two measures of the distribution of output —depend only on the

extreme value tail index of the distribution of firm productivities.

The link between production and distribution also ensures that a generalized

version of the Hosios (1990) condition holds endogenously. Firms are paid both

matching rents, which arise from the frictional matching process, and productivity

rents, which arise from the heterogeneity in firm productivities. Since firms are

paid their social marginal value —i.e. their contribution to both the number of

matches and the expected output per match —the economy is always constrained

effi cient.3 This contrasts with DMP style models with Nash bargaining where

constrained effi ciency arises only in a knife-edge case.

Although most of the paper’s results hold for any well-behaved distribution of

firm productivities, I consider the Pareto distribution as a lead example. In this

case, the unified aggregate production and matching function is quite tractable

and it delivers the Cobb-Douglas aggregate production function as a special lim-

iting case.4 The Pareto distribution yields tractable and empirically relevant

3Constrained effi ciency is a common feature of directed or competitive search economies
(Shimer, 1996; Moen, 1997). Albrecht, Gautier, and Vroman (2014) establishes constrained
effi ciency in a competing auctions environment similar to the present one.

4The connection between the Pareto distribution and the Cobb-Douglas aggregate produc-
tion function has been known since Houthakker (1955), Jones (2005), and Lagos (2006).
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expressions for factor income shares, and it allows us to determine the effects

of changes in the firm productivity distribution on aggregate outcomes. For ex-

ample, I show that the labor share is decreasing in the tail index of the Pareto

distribution if the value of matching rents is not too high. That is, fatter tails of

the firm productivity distribution imply a lower labor share.

Outline. Section 2 discusses related literature. Section 3 presents the model.
Section 4 characterizes the equilibrium. Section 5 presents the theory’s predic-

tions for aggregate outcomes. Section 6 discusses effi ciency. Section 7 presents

the lead example and Section 8 concludes. All proofs are in the Appendix.

2 Related Literature

This paper is closely related to Lagos (2006), which derives a tractable aggre-

gate production function —the Cobb-Douglas and more general C.E.S. function

— in a DMP style environment with labor market frictions. While similar in

spirit, there are some key differences between Lagos (2006) and this paper. First,

Lagos’main focus is on how total factor productivity (TFP) is endogenously de-

termined by labor market conditions. Second, the fact that wages are determined

by auctions here instead of generalized Nash bargaining means that production

and distribution are intimately linked since both are influenced by the underly-

ing distribution of firm productivities. Third, the link between production and

distribution ensures that a generalized version of the Hosios condition holds en-

dogenously and the economy is always constrained effi cient. Finally, this paper

considers a static environment, while Lagos’model is dynamic.

This paper is also related to Jones (2005), which derives a global production

function that is asymptotically Cobb-Douglas in the long run as the total number

of ideas becomes large; and Houthakker (1955), which derives a Cobb-Douglas

aggregate production function using a Leontief local production technology and

a Pareto distribution of capacities.5 There are two main differences between

5Levhari (1968) shows that Houthakker’s result can be generalized to a C.E.S. aggregate
production function with σ < 1; and Growiec (2013) generalizes some of Jones’aggregation
results by providing ideas-based microfoundations for normalized C.E.S. production functions
(see Klump, McAdam, and Willman (2012)). Alternative approaches are found in Dupuy
(2012), which uses a tasks assignment model similar to Rosen (1978) to derive a C.E.S. aggregate
production function, and Eden (2017), which examines how the curvature of the aggregate
production technology depends on the degree of misallocation at the micro level.
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my approach and these papers. First, labor market frictions and unemployment

are central to this paper. Second, I develop joint microfoundations for both

production and distribution by modelling wage determination explicitly.6

This paper contributes to the competing auctions literature, including Peters

and Severinov (1997) and later work by Albrecht et al. (2014); Albrecht, Gautier,

and Vroman (2016); Kim and Kircher (2015); and Lester, Visschers, and Wolthoff

(2015). This paper is also related to the wider literature on directed and com-

petitive search surveyed in Guerrieri, Julien, Kircher, and Wright (2016).7 In

particular, Julien et al. (2000) models workers as sellers who "auction" their la-

bor in a directed search model similar to Burdett et al. (2001). The large economy

version of Julien et al. (2000) is a special case of the present model where there

is no heterogeneity. Also closely related is Shi (2001), which presents a directed

search model with two-sided ex ante heterogeneity. Shi (2001) shows that the

labor share for each machine type is increasing in its market tightness.

This paper is complementary to Shi (2002), Shi (2006), and Shimer (2005). Shi

(2002) develops a directed search model with two-sided heterogeneity: there are

two types of firms and two types of workers. Shi (2006) considers a directed search

environment with many types of workers and homogeneous firms. Shimer (2005)

features two-sided heterogeneity with many types of workers and firms. Workers

apply to firms who choose the most productive applicant, and match output is a

function of both worker and firm type. A key difference between this paper and

Shi (2002), Shi (2006), and Shimer (2005) is the use of a continuous distribution

of match-specific productivities instead of a finite number of worker/firm types.8

Finally, this paper complements others that apply extreme value theory to

economics.9 In particular, the asymptotic results regarding factor shares and the

extreme value tail index are closely related to results found in Gabaix, Laibson,

Li, Li, Resnick, and de Vries (2016) regarding the asymptotic value of markups.

6In addition, both Jones (2005) and Growiec (2013) derive the aggregate production func-
tion by taking the convex hull of the set of available technologies, not by aggregating across
heterogeneous firms. See also Growiec (2008).

7Early contributions include Montgomery (1991), Peters (1991), Shimer (1996), Moen
(1997), Acemoglu and Shimer (1999), Julien, Kennes, and King (2000), Burdett, Shi, and
Wright (2001), and Shi (2001).

8Menzio and Shi (2011) also uses a continuous distribution of match-specific productivities
in a directed search model with bilateral meetings. The authors show that match-specific pro-
ductivity is quantitatively important in accounting for the volatility of labor market variables.

9For example, Kortum (1997); Eaton and Kortum (1999, 2002); Bernard, Eaton, Jensen,
and Kortum (2003); Gabaix and Landier (2008); Growiec (2013); and Oberfield (2013).
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3 Model

The model is static. There are two kinds of risk-neutral agents: workers

and firms. There is a continuum of ex ante identical workers of measure L and

a continuum of ex ante identical firms. All workers are initially unemployed:

L = U . The measure of firms who decide to enter (or "vacancies") is V and the

ratio of such firms to workers is θ ≡ V/U , the labor market tightness.

The timing is as follows. First, workers choose reservation wages. Second,

firms make an entry decision and pay the entry cost. Third, firms approach

workers. Fourth, firms draw match-specific productivities. Fifth, the second-

price auctions take place. Finally, firms earn profits and wages are paid.

Workers are "sellers" of a single unit of labor and firms are "buyers". Workers

post second-price auctions and choose a reservation wage ("reserve price"), taking

into account the effect on firms’entry decisions.10 While workers may in principle

choose different reservation wages, we focus on symmetric equilibria where all

workers choose the same reservation wage wR for a given market tightness θ.

Firms observe the reservation wage wR and, if they choose to enter, pay an

entry cost C to search for a worker. After paying the cost C, each firm can

approach a single worker. Since firms are uncoordinated and workers are ex-ante

identical, I assume that firms approach workers independently and at random.

Meetings may involve either one firm and one worker (one-on-one or bilateral), or

many firms and one worker (many-on-one or multilateral). The number of firms

approaching any given worker is a Poisson random variable with parameter θ.11

Firms learn their productivities ex post. After approaching a single worker,

each firm independently draws a match-specific productivity x from a common

distribution with cdfG. A firm with productivity x can produce x units of output,

with price normalized to one, using a single unit of labor.12

10Second-price auctions are an optimal mechanism if each worker ("seller") could choose a
mechanism that maximized their expected "revenue". McAfee (1993) proved that in any setting
with independent private valuations and competing sellers, it is an equilibrium outcome for
sellers to hold identical second-price auctions with reserve prices equal to their own valuations.
Note that the assumption of risk-neutrality is crucial for the optimality of auctions.
11Since firms approach each worker with equal probability, the matching process is urn-ball.

The Poisson distribution arises endogenously because we are taking the limit of a binomial
distribution —a standard result.
12In the example presented in Section 7, we interpret firms as owning a single unit of capital.

For now, we leave this interpretation open since capital is not essential to the main results.
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A firm’s productivity draw represents its private "valuation" of a unit of

labor since a firm with productivity x is willing to pay up to x to purchase a

unit of labor. We assume that x is private information.13 Since it is a weakly

dominant strategy for buyers to bid their true valuations in second-price auctions,

we assume that firms do so.

If no firms approach a given worker, he is unemployed. Unemployed workers

receive the value of non-market activity, z, which represents both the value of

leisure and the value of unemployment insurance benefits. By the Poisson distri-

bution, unemployment occurs with probability e−θ, so u(θ) = e−θ is the unem-

ployment rate. The matching probability for workers is therefore m(θ) = 1− e−θ

and the probability a firm successfully hires a worker is q(θ) ≡ m(θ)/θ.14

In a one-on-one meeting, exactly one firm approaches a worker. The firm

employs the worker and produces output equal to its productivity x. The worker

is paid his reservation wage wR in this case. In a many-on-one meeting, two

or more firms approach a worker. The firm with the highest productivity em-

ploys the worker and produces output equal to its productivity. The worker’s

wage equals the second-highest productivity among the firms competing for that

worker. Firms that are unsuccessful in hiring receive a payoff of zero.

Throughout the paper, we make the following assumptions.15

Assumption 1. The distribution G is twice differentiable with density g = G′ >

0, a finite mean, no mass points, and support [x0,∞) where x0 ≥ 0.

For simplicity, we assume that z ≤ x0 so that workers will always accept job

offers. To ensure positive firm entry, we assume that EG(x) is not too low.

Assumption 2. The distribution G satisfies EG(x) > z + C and 0 ≤ z ≤ x0.

For some results, we assume that G is a well-behaved distribution.

13Note that the same outcomes would arise if there was Bertrand competition between firms
and complete information. We choose to assume that firms’productivities are private informa-
tion in order to align the model with the competing auctions literature.
14The Poisson meeting technology is invariant, a crucial property identified by Lester et al.

(2015). Invariance implies non-rivalry, as defined in Eeckhout and Kircher (2010), and joint
concavity, as defined in Cai, Gautier, and Wolthoff (2017).
15Assumption 1 could be relaxed to include distributions with bounded upper support, i.e.

support [x0, xmax] where xmax ∈ R+. Definitions and other expressions that follow would need
to be adjusted accordingly and property (iv) of Proposition 1 would no longer hold.
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Definition 1. For x ∈ [x0,∞), the generalized hazard rate εG(x) is defined by

(1) εG(x) ≡ xg(x)

1−G(x)
.

Definition 2. A distribution G is well-behaved if and only if εG(x) is weakly

increasing, i.e. ε′G(x) ≥ 0 for all x ∈ [x0,∞).

The requirement that the generalized hazard rate is weakly increasing is a

very mild condition that is satisfied by almost all standard distributions.16 ,17 It is

strictly weaker than both the increasing hazard rate condition and log-concavity.

4 Equilibrium

The expected value of a filled vacancy is given by J = pG(θ) − wG(θ;wR)

where pG(θ) is the expected match output and wG(θ;wR) is the expected wage

when the reservation wage is wR. For any given reservation wage wR ∈ R+, the

market tightness θ∗(wR) must satisfy

(2) q(θ)(pG(θ)− wG(θ;wR)) ≤ C

and θ∗(wR) ≥ 0, with complementary slackness.

Workers’reservation wage w∗R maximizes their expected payoff, taking into

account the effect on firm entry. That is,

(3) w∗R = arg max
wR∈[0,∞)

m(θ∗(wR))wG(θ∗(wR);wR) + (1−m(θ∗(wR)))z.

To eliminate any indeterminacy, we impose the following restriction on beliefs

off the equilibrium path and restrict our attention to equilibria that satisfy this

restriction. For all reservation wages wR such that J ≥ C, the market tightness

θ∗(wR) satisfies q(θ)J = C, and for all wR such that J < C we have θ∗(wR) = 0.

16The elasticity εG(x) is also sometimes called the log hazard rate.
17Banciu and Mirchandani (2013) provides a list of distributions that feature a weakly in-

creasing generalized hazard rate. Examples include the Uniform, Exponential, Normal, Logistic,
Laplace, Gumbel, Weibull, Gamma, Beta, Pareto, Chi, Lognormal, Cauchy, and F distributions.
Additional conditions on the parameters are required to ensure that Assumption 1 is satisfied.
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Definition 3. An equilibrium is a reservation wage w∗R ∈ R+ and a market

tightness function θ∗ : R+ → R+ such that, given the function θ∗(.), w∗R satisfies

(3), and for all wR ∈ R+ the function θ∗(.) satisfies (2).

In the Appendix, we show that for any distribution G, there exists a unique

equilibrium with w∗R = z and θ∗ > 0 where θ∗ ≡ θ∗(w∗R).18

5 Aggregate implications

We now turn to the model’s predictions and describe how it offers a unified ap-

proach to thinking about production, matching, and distribution. This approach

enables us to examine how changes in the model’s primitives simultaneously af-

fect aggregate outcomes such as unemployment, output, and the labor share, as

well as the effective bargaining power of workers.

5.1 Production and matching

The process by which firms approach workers at random, draw match-specific

productivities, and compete to hire workers, determines an endogenous distri-

bution of output across potential workers, which depends on both the market

tightness θ and the underlying distribution of firm productivities. Both produc-

tion and matching outcomes are captured by this distribution.

5.1.1 Endogenous distribution of output across workers

Both the employment status of a given worker and his expected output are

determined by the number of firms competing to hire that worker. To see this,

suppose that n firms approach a given worker. The matching and production

outcomes are as follows. Matching: if n = 0, the worker is unemployed; if n ≥ 1,

the worker is employed. Production: if n = 0, the worker produces zero output; if

n ≥ 1, the firm with the highest productivity hires the worker and match output

is equal to the maximum of n draws from the distribution G.

18The fact that w∗R = z is consistent with the result of McAfee (1993) discussed in Section
3 since a worker’s own "valuation" of his labor equals the value of non-market activity z. A
closely related result is derived in Albrecht, Gautier, and Vroman (2012), which amends an
earlier result in Peters and Severinov (1997).
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We denote the cdf of the endogenous distribution of output across workers

by HG(x; θ). To derive this distribution, let HG(x|n) = G(x)n, the cdf of the

worker’s output conditional on n firms approaching. To obtain the cdf HG(x; θ),

the conditional cdf is weighted by the Poisson probability that n firms approach:

(4) HG(x; θ) =

∞∑
n=0

θne−θ

n!
G(x)n = e−θ(1−G(x)).

The distributionHG(x; θ) of output across all workers (including the unemployed)

has continuous support [x0,∞) plus a mass point at zero corresponding to un-

employment. We can also define the endogenous distribution of output across

employed workers by He
G(x; θ) ≡ (HG(x; θ)− e−θ)/m(θ).

We define output per capita fG(θ) as the expected value of the distribution

of output across all workers, i.e. fG(θ) ≡
∫∞
x0
x dHG(x; θ). We can break down

fG(.) into a "production technology" and a "matching technology" by writing

fG(θ) = m(θ)pG(θ), where pG(θ) ≡
∫∞
x0
x dHe

G(x; θ), the expected match output.

(5) fG(θ) = (1− e−θ)︸ ︷︷ ︸
matching technology m(θ)

(∫ ∞
x0

x dHe
G(x; θ)

)
︸ ︷︷ ︸
production technology pG(θ)

The matching technology is a standard urn-ball function, m(θ) = 1− e−θ. How-
ever, the nature of the "production technology" pG(.), which determines the ex-

pected match output, is governed by the underlying distribution G of firm pro-

ductivities: the parameters of the technology pG(.) will be inherited from that

distribution. Since fG(.) is the natural outcome of the production and matching

processes and it incorporates both, we focus on the properties of this function.

5.1.2 Unified aggregate production and matching function

Aggregate output is given by Y = FG(V, U) where FG is a constant-returns-to-

scale function defined by FG(V, U) ≡ fG(θ)U . Similarly to a standard matching

function M(V, U) —but different from a standard aggregate production function

—the factor inputs of FG are the total measure of vacancies V and unemployed

workers U , not employed labor or utilized capital. Similarly to a standard ag-

gregate production function —but different from a standard matching function —
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FG represents the total output produced, not the total number of matches. Total

output depends on both the number of matches and the expected match output.

We refer to FG as an aggregate production and matching function since fG(θ) =

m(θ)pG(θ) and it incorporates both a "production technology" pG(.) and a "match-

ing technology" m(.). Crucially, the functions pG(.) and m(.) do not arise inde-

pendently in this setting: instead, fG(.) is the natural outcome. We therefore

refer to FG as a unified aggregate production and matching function.

In the special case where G is degenerate and there is no firm heterogeneity,

match output is constant and we have fG(θ) = m(θ) if x0 = 1. The function fG(.)

can therefore be seen as a "generalization" of m(.) to an environment where the

expected match output is endogenous and depends on the market tightness.

The unified nature of the aggregate production function affects the way in

which marginal products should be interpreted. Since the relevant factor inputs

are vacancies and unemployed workers, f ′G(θ) represents the marginal contribu-

tion to aggregate output of an extra vacancy, which may end up either filled or

unfilled depending on whether or not the firm is successful in hiring. The mar-

ginal product of "labor", fG(θ)−θf ′G(θ), represents the effect on aggregate output

of an extra potential worker, who may end up either employed or unemployed.

5.1.3 Properties of the unified production and matching function

Before we present Proposition 1, we first define the tail index —a measure

of the degree of fatness of the tails of the distribution G (not a measure of

dispersion). A higher tail index λG implies fatter tails. Note that if G is well-

behaved by Definition 2, then it has tail index λG ∈ [0, 1).19

Definition 4. A distribution G with support [x0,∞) has extreme value tail index

λG if and only if

(6) lim
x→∞

d

dx

(
εG(x)−1 x

)
= λG for some λG ∈ R.

The first part of Proposition 1 states that for any distribution G that sat-

isfies Assumption 1, the function fG(.) has some desirable features: it is twice

differentiable, increasing, strictly concave, and it satisfies all the standard Inada

19For details, see the proof of Proposition 1 in the Appendix.
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conditions except that limθ→0 f
′
G(θ) is finite.20

The second part of Proposition 1 concerns the elasticity of substitution σG(θ)

between V and U. Intuitively, the elasticity of substitution reflects the relative

ease of substitution between vacancies and unemployed workers. It is defined by

(7) σG(θ) ≡ −
(
∂ log(FV /FU)

∂ log(V/U)

)−1

where FV ≡ ∂FG/∂V and FU ≡ ∂FG/∂U.

Proposition 1. The function fG : R+ → R+ is given by

(8) fG(θ) =

∫ ∞
x0

θe−θ(1−G(x))xg(x)dx.

For any distribution G, (i) f ′G(θ) > 0; (ii) f ′′G(θ) < 0; (iii) fG(0) = 0; (iv)

limθ→∞ fG(θ) = +∞; (v) limθ→∞ f
′
G(θ) = 0; and (vi) limθ→0 f

′
G(θ) = EG(x) ≥ x0.

If G is well-behaved, the elasticity of substitution σG(θ) is less than or equal to

one, or, equivalently, the output elasticity ηf (θ) is decreasing in θ. In the limit

as θ →∞, we have σG(θ)→ 1 and ηf (θ)→ λG ∈ [0, 1), the tail index of G.

Since fG(.) can be interpreted as a generalization of m(.), these results gener-

alize standard properties often assumed to hold for the matching technology. For

example, the result that the elasticity of substitution σG(θ) is always less than

one is equivalent to the result that the output elasticity with respect to vacancies,

defined by ηf (θ) ≡ f ′G(θ)θ/fG(θ), is decreasing in θ. This result nests as a special

case the fact that the matching elasticity ηm(θ) ≡ m′(θ)θ/m(θ) is decreasing in

θ, a common assumption in search models.

The output elasticity ηf (θ) is a measure of curvature of the function fG(.).

In the limit as θ → ∞, i.e. as unemployment goes to zero, the elasticity of
substitution σG(θ) converges to one and the output elasticity ηf (θ) converges to

λG.21 In this way, the tail index λG —which measures the fatness of the tails

20The Inada condition limθ→0f ′(θ) = ∞ is a suffi cient but not a necessary condition for
the existence of a steady state equilibrium in most applications in macroeconomics. Generally,
what is strictly necessary is that limθ→0f ′(θ) is suffi ciently large.
21This does not imply that the aggregate production function FG converges asymptotically

to a Cobb-Douglas function, but rather that the value of the variable elasticity is one when
evaluated in the limit as θ → ∞. In Section 7, however, we will see that in the special case
where G is Pareto, the aggregate production function is indeed asymptotically Cobb-Douglas.
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of the distribution of firm productivities —is a key parameter that governs the

curvature of the unified production and matching function fG(.).

5.2 Distribution

Since wages are determined by auctions, it is not just the endogenous pro-

duction technology that is governed by properties of the distribution of firm

productivities. The distribution of output between workers and firms is also in-

fluenced by properties of this distribution. In particular, we will see that the

aggregate labor share and workers’effective bargaining power —two measures of

how output is distributed —are also driven by the tail index of this distribution.

5.2.1 Productivity and matching Rents

To understand firm profits and wages in this model, we can decompose the

value of a filled vacancy, J = pG(θ)− wG(θ; z), into two components:

(9) J = πG(θ)︸ ︷︷ ︸
productivity rents

+µ(θ)(x0 − z)︸ ︷︷ ︸
matching rents

where µ(θ) ≡ θe−θ/m(θ) is the proportion of bilateral meetings and πG(θ) is the

expected value of productivity rents, defined by

(10) πG(θ) ≡
∫ ∞
x0

εG(x)−1 x dHe
G(x; θ),

where He
G(x; θ) is the endogenous distribution of match output across employed

workers and εG(x) is the generalized hazard rate given by (1).

Productivity rents arise because firms are heterogeneous. In many-on-one

meetings, successful firms receive the difference between the highest and second

highest productivity among the competing firms. The expected productivity

rents available to firms are reflected in the first term on the right of (9).22 This

term disappears when there is no heterogeneity in firm productivities.

Matching rents arise because there may be a positive match surplus even for

the least productive firm in the economy. Even if a firm has productivity close

to the minimum value x0, it is still possible to earn a profit if they are lucky

22Note that πG(θ) already incorporates the probability that a meeting is many-on-one.
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enough to be matched with a worker in a one-on-one meeting. The matching

rents available to firms are reflected in the second term on the right of (9). The

value of matching rents is x0− z and the proportion of bilateral meetings is µ(θ)

where µ′(θ) < 0 and µ(θ)→ 0 as θ →∞. The value of matching rents disappears
if z = x0, while the probability of obtaining these rents disappears as θ →∞.

Two special cases. This general framework nests two important special cases.

In competing auctions models such as Peters and Severinov (1997) and Albrecht

et al. (2014), there are no matching rents. This is because sellers’valuations are

assumed to be greater than or equal to the minimum buyers’valuation, i.e. there

is no "gap" between z and x0.23 The value of matching rents, x0 − z, therefore
disappears and the expected payoff for a successful buyer is simply J = πG(θ).

In directed search models such as Julien et al. (2000), where all firms have the

same productivity, there are no productivity rents. The value of a filled vacancy

is J = µ(θ)(x0−z) and a positive "gap", x0−z, is necessary to ensure firm entry.

5.2.2 Wages, labor share, and workers’effective bargaining power

Expected wages wG(θ) is determined by the market tightness θ, the value of

non-market activity z, and the distribution G.24 Using (9) and the fact that

J = pG(θ)− wG(θ), the expected wage for employed workers is given by

(11) wG(θ) = pG(θ)︸ ︷︷ ︸
expected match output

− πG(θ)︸ ︷︷ ︸
productivity rents

−µ(θ)(x0 − z)︸ ︷︷ ︸
matching rents

.

The aggregate labor share sL(θ;G) represents workers’share of the expected

match output pG(θ) and it is defined by sL(θ;G) ≡ wG(θ)/pG(θ), so we have

(12) sL(θ;G) = 1− πG(θ)

pG(θ)︸ ︷︷ ︸
productivity rents

− µ(θ)(x0 − z)

pG(θ)︸ ︷︷ ︸
matching rents

.

Here, productivity rents and matching rents are expressed as a share of the ex-

pected match output. In the special case where x0 = z, there are no matching

23In Peters and Severinov (1997), sellers’valuation is zero and buyers’valuations are drawn
from a distribution with support [0,1]. In Albrecht et al. (2014), both sellers’ and buyers’
valuations are drawn from distributions with support [0,1].
24For simplicity, we now suppress the dependence of wG(θ; z) on z and simply write wG(θ).

13



rents for firms and sL(θ;G) = 1 − πG(θ)/pG(θ). In the special case where all

firms have the same productivity, i.e. p̄ = x0, there are no productivity rents and

sL(θ;G) = 1− µ(θ)(x0 − z)/x0.

The effective bargaining power of workers βG(θ) is defined as the endogenous

value of workers’bargaining power β that would yield the same average wages

as the current model if wages were determined by generalized Nash bargaining

instead of auctions. Since expected wages under Nash bargaining is wNG (θ) =

β(pG(θ)− z) + z, equating wNG (θ) and (11) yields

(13) βG(θ) = 1− πG(θ)

pG(θ)− z︸ ︷︷ ︸
productivity rents

− µ(θ)(x0 − z)

pG(θ)− z︸ ︷︷ ︸
matching rents

.

When z = 0, we have βG(θ) = sL(θ;G). In the special case where x0 = z,

there are no matching rents for firms and 1− βG(θ) = πG(θ)/(pG(θ)− z). In the

special case where all firms have the same productivity, i.e. p̄ = x0, there are no

productivity rents and 1− βG(θ) = µ(θ).

Proposition 2. If G is well-behaved, expected productivity rents as a share of out-
put, πG(θ)/pG(θ), is decreasing in θ, and both labor’s share sL(θ;G) and workers’

effective bargaining power βG(θ) are increasing in θ. In the limit as θ → ∞, we
have πG(θ)/pG(θ)→ λG, sL(θ;G)→ 1− λG, and βG(θ)→ 1− λG.

Greater competition to hire workers reduces the expected productivity rents

available to firms, as a share of match output, by reducing the profit share in

multilateral meetings. In the limit as C → 0 and θ∗ →∞, the expected matching
rents go to zero (since µ(θ) → 0) but the value of productivity rents as a share

of output goes to λG, the tail index of G. Intuitively, the tail index is important

because successful firms in multilateral meetings receive the difference between

the highest and second-highest productivity, x1 − x2, and fatter tails increase

the expected value of the highest productivity x1 by relatively more than the

second-highest productivity x2.

Greater competition to hire workers increases both labor’s income share and

workers’effective bargaining power because πG(θ)/pG(θ) is decreasing in θ, and

also µ(θ)/pG(θ) is decreasing in θ. However, even in the limit as C → 0 and

θ∗ →∞ neither labor’s share nor workers’effective bargaining power approaches
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one unless the tail index λG = 0. In the limit as θ → ∞, both the labor share
and workers’effective bargaining power converge to 1− λG.25

In this way, both the production and the distribution of output are influenced

by the nature of the underlying firm productivity distribution. In particular, the

tail index λG is a key determinant of both the curvature of the production and

matching technology fG(.) and the distribution of output. This link between

production and distribution arises because both are determined simultaneously

through the process of direct competition between firms.

5.3 Comparative statics

Proposition 3 presents some comparative statics results.

Proposition 3. If G is well-behaved, (i) the market tightness θ∗ is decreasing in

both the value of non-market activity z and the cost of entry C; (ii) unemployment

u∗ is increasing in both z and C; (iii) output per match p∗ is decreasing in both

z and C; (iv) output per capita y∗ is decreasing in both z and C; (v) labor share

s∗L is decreasing in C and increasing in z; and (vi) workers’effective bargaining

power β∗ is decreasing in both C and z.

If the cost of entry C increases, there is less firm entry and therefore a lower

equilibrium market tightness θ∗. As a result, equilibrium unemployment u∗ is

higher since u′(θ) < 0 and equilibrium output per capita y∗ is lower since f ′G(θ) >

0 by Proposition 1. At the same time, the equilibrium labor share s∗L and workers’

bargaining power β∗ decrease by Proposition 2. Equilibrium output per match

p∗ is also lower since p′G(θ) > 0.26 Intuitively, this is because greater competition

to hire workers allows workers to be more "selective". Since workers are hired by

the most productive firm who approaches them, a greater number of competing

firms increases the expected value of the highest productivity among those firms.

If the value of non-market activity z increases, workers’ reservation wage

increases and entry is less attractive for firms, decreasing the market tightness

θ∗. As a result, unemployment u∗ is higher and both y∗ and p∗ are lower. There

are two effects on the labor share s∗L. The direct effect of an increase in z is

25It is possible to reconcile this result with Theorem 2 in Gabaix et al. (2016) regarding the
asymptotic value of markups when the number of competing firms is large.
26See Lemma 2 in the Appendix for a proof that p′G(θ) > 0 if G is well-behaved.
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that the labor share increases because firms must pay higher wages in bilateral

meetings, while the indirect effect is that θ∗ decreases, which has a negative effect

on labor’s share by Proposition 2. The direct effect always dominates: labor’s

share is increasing in z. Both the direct and indirect effects on workers’effective

bargaining power are negative and thus β∗ is decreasing in z.

6 Effi ciency

The social planner’s objective is to choose the market tightness θP that max-

imizes total output plus the total value of non-market activity minus the total

costs of entry. Dividing by U , this is equivalent to maximizing

(14) Λ(θ) = fG(θ) + (1−m(θ))z − Cθ.

The social planners’choice is “constrained”in the sense that it is subject to the

constraints of both the matching frictions and the production technology.

In the Appendix, we prove that for any distribution G, the economy is con-

strained effi cient. While constrained effi ciency is a common feature of directed

and competitive search economies, this result extends those regarding the con-

strained effi ciency of both competing auctions environments such as Albrecht

et al. (2014), where only productivity rents exist, and directed search models

such as Julien et al. (2000), where only matching rents exist.

Generalized Hosios Condition. One consequence of the fact that the ex-

pected match output pG(θ) is endogenous here is that the standard Hosios con-

dition does not apply. A generalized version of the Hosios (1990) condition is

necessary to achieve constrained effi ciency in this environment.27 Since this con-

dition holds endogenously here, the economy is always constrained effi cient.

Since fG(θ) = m(θ)pG(θ), we have ηf (θ) = ηm(θ) + ηp(θ), where ηf (θ) is the

elasticity of fG(.) with respect to θ, ηm(θ) is the elasticity of m(.) with respect to

θ, and ηp(θ) is the elasticity of pG(.) with respect to θ. Rearranging the first-order

27For a detailed discussion of effi ciency in such environments, see Mangin and Julien (2017).
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condition for (14), constrained effi ciency holds only if the equilibrium θ∗ satisfies

(15) ηf (θ) =
Cθ

fG(θ)
+
ηm(θ)z

pG(θ)
.

In the present model, condition (15) holds endogenously for any z and any

distribution G. The economy is always constrained effi cient (i.e. it is not a knife-

edge condition). Notice that condition (15) is a generalization of the standard

Hosios (1990) condition. In the special case where G is degenerate and expected

match output is constant, we have pG(θ) = x0 and ηf (θ) = ηm(θ). Substituting

into (15) and rearranging, we recover the standard Hosios condition.

7 Example: Pareto distribution with capital

We now turn to a specific distribution G : the Pareto distribution. This

distribution is frequently used to represent the distribution of firm productivities

and it arises naturally in many contexts.28 In the present model, it yields the

widely used Cobb-Douglas aggregate production function as an asymptotic result

and it delivers tractable and empirically relevant expressions for factor shares.

Let G(x) = 1−
(
x
x0

)−1/λ

for x ∈ [x0,∞) and G(x) = 0 otherwise. The Pareto

distribution is well-behaved in the sense of Definition 2. In fact, it is the unique

distribution G such that εG(x) is constant, i.e. εG(x)−1 = λ for all x ∈ [x0,∞).

The parameter λ > 0 is the tail index of G and x0 ≥ 0 is the minimum firm

productivity. To ensure that Assumptions 1 and 2 are satisfied, we impose λ < 1,

x0/(1− λ) > z + C, and 0 ≤ z ≤ x0.
29

Suppose that each firm acquires a single machine, or unit of capital, upon

entry. We can interpret the cost of entry C as incorporating the cost of purchasing

a machine. Total capitalK is given by firms’demand, soK = V. Since all workers

are initially unemployed, L = U and thus θ = K/L.

7.1 Production, matching, and distribution

If G is Pareto, the endogenous distribution H(x; θ) is a truncated Fréchet

extreme value distribution with a mass point. The mass point at zero with

28See Gabaix (2009) and Gabaix (2015) for an overview of the use of power laws in economics.
29Note that EG(x) = x0/(1− λ) and G has a finite variance if and only if λ < 1/2.
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probability mass u(θ) = e−θ represents unemployment.

(16) H(x; θ) =

{
e−θx

−1/λ
if x ∈ [x0,∞)

e−θ if x ∈ [0, x0)

We now introduce an important function that is a "generalization" of the

Gamma function defined by Γ(s) ≡
∫∞

0
ts−1e−t dt for s ∈ R+.

Definition 5. For any s, x ∈ R+, the Lower Incomplete Gamma function is

(17) γ(s, x) ≡
∫ x

0

ts−1e−t dt.

For the Pareto distribution, output per capita f(θ) is given by

(18) f(θ) = x0θ
λγ(1− λ, θ).

Setting λ = 0 in (18) corresponds to the special case where match output

is constant, p̄ = x0. Since γ(1, θ) = 1 − e−θ, we have f(θ) = m(θ)p̄, i.e. the

matching function multiplied by a constant. On the other hand, the asymptotic

production function arises in the limit as C → 0 and θ∗ → ∞. This function
is f(θ) = Aθλ where A = x0Γ(1 − λ) since limθ→∞ γ(1 − λ, θ) = Γ(1 − λ) and

therefore f(θ) ∼ Aθλ in the "frictionless" limit where θ →∞.
Since each firm hires one unit of capital, θ = K/L and aggregate output is

(19) Y = x0γ(1− λ, θ)KλL1−λ.

Importantly, this function is not Cobb-Douglas since the term γ(1− λ, θ) is not
constant but depends on θ = K/L. Consistent with Proposition 1, the elasticity

of substitution between capital and labor is strictly less than one. However, this

function is asymptotically Cobb-Douglas in the limit as θ →∞.30

To determine firm profits and expected wages, the Pareto distribution has the

useful property that π(θ) = λp(θ), i.e. a firm’s expected productivity rents are

linear in match output. Substituting into (11) yields

(20) w(θ) = (1− λ)p(θ)︸ ︷︷ ︸
expected output minus productivity rents

−µ(θ)(x0 − z)︸ ︷︷ ︸
matching rents

.

30In the Appendix, we derive an exact Cobb-Douglas function that holds for finite θ.
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The aggregate capital share sK(θ) ≡ 1− sL(θ) is given by

(21) sK(θ) = λ︸︷︷︸
productivity rents

+
µ(θ)(x0 − z)

p(θ)︸ ︷︷ ︸
matching rents

.

and firms’effective bargaining power is given by

(22) 1− β(θ) =
λp(θ)

p(θ)− z︸ ︷︷ ︸
productivity rents

+
µ(θ)(x0 − z)

p(θ)− z︸ ︷︷ ︸
matching rents

.

Consistent with Proposition 2, we have sK(θ)→ λ and 1− β(θ)→ λ in the limit

as C → 0 and θ∗ → ∞. Since µ(θ) → 0 exponentially fast, we have sK(θ) ≈ λ

and 1− β(θ) ≈ λ when unemployment is low.

7.2 Comparative statics

The Pareto distribution allows us to obtain some new results regarding the

effects on aggregate outcomes of changes in the underlying distribution G of firm

productivities, i.e. changes in the tail index λ and the minimum productivity x0.

Note that an increase in λ is an increase in tail fatness, not a mean-preserving

spread, since both the mean and the variance are increasing in λ.

Proposition 4 states that an increase in the tail index λ leads to an increase

in the market tightness θ∗ and therefore a decrease in unemployment. At the

same time, an increase in λ leads to an increase in both output per capita y∗

and output per match p∗. The effect on output is due to both the indirect effect

through θ∗ and also the direct effect of the tail index λ on the curvature of the

production technology. Since workers are hired by the most productive firms,

the "selection" process features diminishing marginal returns —which leads to

concavity of the production technology —but a higher tail index λ lessens the

extent of the diminishing returns. This is because fatter tails make it more likely

that an additional firm will yield a significantly higher productivity draw.

Proposition 4. If G is Pareto, (i) the market tightness θ∗ is increasing in the

tail index λ and the minimum productivity x0; (ii) unemployment u∗ is decreasing

in both λ and x0; (iii) output per match p∗ is increasing in both λ and x0; (iv)

output per capita y∗ is increasing in both λ and x0; and (v) labor share s∗L is
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decreasing in λ if the value of matching rents is not too high, i.e. if

(23)
x0 − z
x0

<
1− λ
2− λ.

When λ increases, there are two opposing effects on factor shares. Productiv-

ity rents, as a share of output, are clearly increasing in λ because π(θ)/p(θ) = λ.

However, matching rents, as a share of output, are decreasing in λ.

(24)
ds∗K
dλ

=
d

dλ
(λ)︸ ︷︷ ︸

> 0 effect on productivity rents

+(x0 − z)
d

dλ

µ(θ∗)

p(θ∗)
.︸ ︷︷ ︸

< 0 effect on matching rents

First, the market tightness θ∗ is increasing in λ, and µ(θ)/p(θ) is decreasing in θ

since µ′(θ) < 0 and p′(θ) > 0, so the indirect effect on matching rents is negative.

Intuitively, a higher value of λ induces greater competition to hire workers, which

both decreases the proportion of bilateral meetings and increases the expected

match output. The direct effect on matching rents is also negative. An increase in

λ directly increases the expected match output but not the fixed value of matching

rents, x0 − z, therefore matching rents fall as a share of match output. Overall,
the net effect depends on the relative size of the opposing effects on productivity

and matching rents. Condition (23) states that the effect on productivity rents

dominates if the value of matching rents is not too high.31

The effect of an increase in λ on firms’effective bargaining power is ambigu-

ous. The Appendix provides a suffi cient condition under which workers’effective

bargaining power is decreasing in the tail index λ.

The Appendix also provides a condition that is both necessary and suffi cient

for labor share to be increasing in the minimum productivity x0. This condition

is suffi cient for workers’effective bargaining power to be increasing in x0.

7.3 Numerical example

The link between the firm productivity distribution and the model’s aggregate

implications provides a novel way to calibrate the model. In contrast with a DMP

style model where wages are determined by Nash bargaining, the model enables us

31If G is Pareto and x0 = 1, the suffi cient condition (23) in Proposition 4 is consistent with
Assumption 2 if and only if C < 1

(1−λ)(2−λ) . Since λ ∈ (0, 1), C < 1/2 will suffi ce.
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to bypass the need to determine the value of non-market activity z and workers’

bargaining power β. This is a useful feature of the model because there is no

consensus about the values of these key parameters in the search literature.

The tail index parameter λ can be determined by using data on productivity

dispersion. Consistent with the approach found in Mangin and Sedlacek (2017),

we set λ = 0.27 and x0 = 1, and the remaining parameters C and z are pinned

down by targeting an unemployment rate of 5.8% and labor share of 68%. The

implied cost of entry is C = 0.18, or 10.6% of average match output. The implied

value of non-market activity is z = 0.51, or 44.2% of average wages.

Table 1 presents the values of the key endogenous variables under the bench-

mark calibration and highlights the comparative statics results. The last column

summarizes the effects of a mean-preserving spread in G.32

Value λ x0 C z MPS

u∗ unemployment rate 5.8% - - + + -

p∗ output per match 1.71 + + - - +

y∗ output per capita 1.61 + + - - +

s∗L labor share 0.68 - + - + -

β∗ workers’bargaining power 0.54 + + - - -

w∗ average wages 1.16 + + - + +

Both the labor share and workers’effective bargaining power are increasing

the minimum firm productivity x0. The labor share is decreasing in the tail index

λ but workers’effective bargaining power is increasing in the tail index λ. The

direction of the effect of a mean-preserving spread in G is generally the same

as that for an increase in λ. Workers’effective bargaining power β∗ is the only

variable for which the direction of the effect differs: a mean-preserving spread in

G leads to a decrease in both the labor share and workers’effective bargaining

power. Since successful firms receive the difference between the highest and

second-highest productivities among competing firms, it is intuitive that both

the labor share and workers’effective bargaining power are lower when there is

greater firm heterogeneity or productivity dispersion.
32To consider the effect of a mean-preserving spread, we set x0 = x̄(1 − λ) where x̄ is a

constant. The mean of G equals x0/(1 − λ), which is always equal to x̄, but the variance of
G is increasing in λ. We then consider the effect of an increase in λ, which is now a genuine
mean-preserving spread. We choose x̄ to ensure that x0 = 1 when λ = 0.27 so that the initial
calibration for this exercise is identical to the benchmark calibration.
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Average wages are increasing in the minimum productivity x0 since w(θ) =

sL(θ)p(θ) and both the labor share s∗L and output per match p
∗ are increasing

in x0. Also, average wages are decreasing in the cost of entry C since both s∗L
and p∗ are decreasing in C. When there is an increase in the value of non-market

activity z, the labor share increases but output per match falls. The former effect

dominates and average wages are increasing in z. When there is an increase in

the tail index λ or a mean-preserving spread in the distribution G, the labor

share falls but output per match rises. The increase in expected match output is

suffi ciently large that this effect dominates and average wages increase.

Notice that if wages were instead determined by Nash bargaining, the effi cient

value of workers’bargaining parameter would be β = 0.54 under this calibration.

However, since the matching elasticity with respect to vacancies is ηm(θ∗) = 0.18,

applying the standard Hosios condition would result in β = 0.82. The fact that

firms’entry decisions affect both the matching probability for workers and the

expected match output is thus quantitatively important: effi ciency requires that

firms are compensated through both productivity and matching rents.

8 Conclusion

This paper offers a unified approach to production, matching, and distribu-

tion. A process of direct competition between firms to hire workers simultane-

ously endogenizes both the average match output and the distribution of output

between workers and firms —as measured by either the labor share or workers’

effective bargaining power. As a result, the curvature of the endogenous produc-

tion technology and the distribution of output are both influenced by properties

of the underlying firm productivity distribution. For example, if this distribution

is Pareto, the labor share is decreasing in the tail index (a measure of tail fatness)

provided that the value of matching rents is not too high.

Mangin and Sedlacek (2017) extends the present model to a dynamic environ-

ment with aggregate shocks and shows that a calibrated version of it can account

for the dynamics of the labor share, and other variables, over the business cycle.

Possible directions for future research include: allowing for ex ante heterogene-

ity of workers and/or firms; considering alternative meeting technologies; and

studying the model’s predictions regarding the wage distribution.
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Appendix: Proofs

A.1 Existence and uniqueness of equilibrium. Suppose a firm draws
x from the distribution G and n firms compete to hire the same worker. If n = 1,
the firm’s expected net payoff is just π1 =

∫∞
x0

(x − wR) dG(x) − C. If n ≥ 2, the
expected net payoff is

(25) π2(x, n) = β(x, n)(x− w(x, n))− C,

where β(x, n) is the probability the firm is successful in hiring the worker andw(x, n) =
E(Y n

2 |Y n
1 = x) where Y n

2 is the second highest from n draws, and Y n
1 is the highest.

Let H(y, n) be the distribution of Y n
1 , i.e. H(y, n) = G(y)n. Now E(Y n

2 |Y n
1 = x)

= E(Y n−1
1 |Y n−1

1 < x), so expected wages as a function of the highest productivity x
and the number of firms n is w(x, n) = 1

H(x,n−1)

∫ x
x0
y dH(y, n− 1) and thus

(26) π2(x, n) = β(x, n)

(
x− 1

H(x,n−1)

∫ x

x0

y dH(y, n− 1)

)
− C.

Now β(x, n) is just G(x)n−1 = H(x, n − 1). Substituting into (26) and using inte-
gration by parts, we obtain π2(x, n) =

∫ x
x0
H(y, n − 1)dy − C. When n ≥ 2, the

expected payoff for a firm is π2(n) =
∫∞
x0
π2(x, n)g(x)dx. Integrating by parts,

(27) π2(n) = [π2(x, n)G(x)]∞x0 −
∫ ∞
x0

d

dx
[π2(x, n)]G(x)dx− C.

Now, d
dx

[π2(x, n)] = d
dx

(∫ x
x0
H(y, n− 1)dy − C

)
= H(x, n−1).Also, [π2(x, n)G(x)]∞x0 =

limx→∞ π2(x, n), which is
∫∞
x0
H(y, n − 1)dy, since G(x) → 1 as x → ∞ and

G(1) = 0. Rearranging, we have

(28) π2(n) =

∫ ∞
x0

β(x, n)(1−G(x))dx− C.

The number of firms n approaching a given worker is a Poisson random variable with
parameter θ, so the expected net payoff given n ≥ 2 is

(29) π2(θ) =

∫ ∞
x0

β(x)(1−G(x))dx− C,

where β(x) is the probability of being successful given that n ≥ 2, namely

(30) β(x) =
1

1− e−θ
∞∑
n=2

e−θθn−1

(n− 1)!
G(x)n−1 =

e−θ(1−G(x)) − e−θ
1− e−θ .
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Using Π(θ) = e−θπ1 + (1− e−θ)π2(θ), the expected net payoff for a firm is

Π(θ) =

∫ ∞
x0

e−θ(1−G(x))(1−G(x))dx

+e−θ
((∫ ∞

x0

x g(x)dx−
∫ ∞
x0

(1−G(x))dx

)
− wR

)
− C.

By integration by parts and the fact that limx→∞ x(1 − G(x)) = 0, the zero profit
condition Π(θ) = C is equivalent to

(31) F (θ) =

∫ ∞
x0

e−θ(1−G(x))(1−G(x))dx+ e−θ (x0 − wR)− C = 0.

Now F (θ) is continuous in θ on [0,∞) and F (θ)→ −C as θ →∞. If F (0) > 0,
the intermediate value theorem implies that there exists a θ > 0 such that F (θ) = 0.

Using integration by parts, F (0) =

∫ ∞
x0

(1−G(x))dx + (x0 − wR)− C = EG(x)−

wR − C. So there exists a θ > 0 such that F (θ) = 0 if EG(x) > wR + C. Otherwise,
no firms enter and θ = 0. To prove uniqueness of the equilibrium θ∗, it suffi ces to show
that F ′(θ) < 0. Applying Leibniz’integral rule,

(32) F ′(θ) = −
(∫ ∞

x0

e−θ(1−G(x)) (1−G(x))2 dx+ e−θ(x0 − wR)

)
< 0.

Therefore, given workers’reservation wage wR, there exists a unique market tightness
θ∗(wR) that satisfies the zero profit condition (31) and therefore also (2).

Workers’reservation wage w∗R maximizes their expected payoff, i.e.

(33) w∗R = arg max
wR∈[0,∞)

m(θ∗(wR))wG(θ∗(wR)) + (1−m(θ∗(wR)))z

where θ∗(wR) satisfies (2). Substituting in wG(θ) = pG(θ) − C/q(θ) from (2) and
using m(θ) = 1− e−θ, this is equivalent to

(34) w∗R = arg max f(θ∗(wR))− Cθ∗(wR) + ze−θ
∗(wR)

where fG(θ) ≡ m(θ)pG(θ). The first order condition for (34) is dθ∗

dwR
(f ′(θ) − C −

ze−θ) = 0. Since dθ∗

dwR
= −∂F/∂wR

∂F/∂θ
< 0, this holds if and only if f ′(θ)−C = ze−θ. Using

(39) and (31), θ∗(wR) satisfies f ′(θ) − C = wRe
−θ and hence w∗R = z. Substituting

w∗R = z into (31), the unique equilibrium market tightness θ∗ ≡ θ∗(w∗R) satisfies

(35)
∫ ∞
x0

e−θ(1−G(x))(1−G(x))dx+ e−θ (x0 − z) = C

and θ∗ > 0 provided that EG(x) > z + C, which is true if Assumption 2 holds.
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A.2 Proof of Proposition 1. Using the definition of fG(.) and expression
(4) for the distribution HG(x; θ), we obtain

(36) fG(θ) =

∫ ∞
x0

θe−θ(1−G(x))xg(x)dx.

Applying Leibniz’s rule, we have

(37) f ′G(θ) =

∫ ∞
x0

xg(x)e−θ(1−G(x))dx−
∫ ∞
x0

θxg(x)e−θ(1−G(x))(1−G(x))dx.

By integration by parts on the right integral, and using the fact that limx→∞ x(1 −
G(x)) = 0 (which follows from the finite mean assumption), we have
(38)∫ ∞
x0

θxg(x)e−θ(1−G(x))(1−G(x))dx = −x0e
−θ−

∫ ∞
x0

e−θ(1−G(x))((1−G(x))−xg(x))dx,

Substituting (38) into (37),

(39) f ′G(θ) =

∫ ∞
x0

e−θ(1−G(x))(1−G(x))dx+ x0e
−θ > 0,

and part (i) is proved. Next, we use Leibniz’rule again to prove part (ii),

(40) f ′′G(θ) = −
(∫ ∞

x0

e−θ(1−G(x))(1−G(x))2dx+ x0e
−θ
)
< 0.

Clearly, f(0) = 0 and limθ→∞ f
′
G(θ) = 0, so parts (iii) and (v) hold. Now con-

sider limθ→∞ fG(θ). Changing variables by setting t = 1 − G(x), we have fG(θ) =

θ

∫ 1

0

e−θtG−1(1 − t)dt. Defining G−1(y) = 0 for y < 0, we have G−1(1 − t) = 0

for t > 1 so fG(θ) = θ

∫ ∞
0

e−θtG−1(1 − t)dt and we can apply the initial value

theorem for Laplace transforms, which states that for any piecewise continuous func-
tion φ(t), limθ→∞ θ

∫∞
0
e−θtφ(t)dt = limt0→0 φ(t0). So we have limθ→∞ fG(θ) =

limt0→0G
−1(1−t0) = G−1(1) = +∞, and part (iv) holds. Using (37), limθ→0 f

′
G(θ) =

limθ→0

∫∞
x0
xg(x)e−θ(1−G(x))dx =

∫∞
x0
xg(x)dx = EG(x), so (vi) holds.

Using Lemma 1 below, we first prove that if G is well-behaved then σG(θ) ≤ 1.
Starting with the definition found in Arrow, Chenery, Minhas, and Solow (1961),

(41) σG(θ) =
−f ′G(θ)(fG(θ)− θf ′G(θ))

θfG(θ)f ′′G(θ)
.
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Let Ḡ(x) = 1−G(x). Inserting f ′G(θ) from (39) and f ′′G(θ) from (40) into (41),

σG(θ) =

(∫∞
x0
e−θḠ(x)Ḡ(x)dx+ x0e

−θ
)(∫∞

x0
e−θḠ(x)xg(x)dx−

(∫∞
x0
e−θḠ(x)Ḡ(x)dx+ x0e

−θ
))

(∫∞
x0
θe−θḠ(x)xg(x)dx

)(∫∞
x0
e−θḠ(x)Ḡ(x)2dx+ x0e−θ

) .

Using (38) and simplifying further, we have

(42) σG(θ) =

(∫∞
x0
e−θḠ(x)Ḡ(x)dx+ x0e

−θ
)(∫∞

x0
e−θḠ(x)xg(x)Ḡ(x)dx

)
(∫∞

x0
e−θḠ(x)xg(x)dx

)(∫∞
x0
e−θḠ(x)Ḡ(x)2dx+ x0e−θ

) .

Multiplying out (42) yields

σG(θ) =

(∫∞
x0
e−θḠ(x)Ḡ(x)dx

)(∫∞
x0
e−θḠ(x)xg(x)Ḡ(x)dx

)
+ x0e

−θ
(∫∞

x0
e−θḠ(x)xg(x)Ḡ(x)dx

)
(∫∞

x0
e−θḠ(x)xg(x)dx

)(∫∞
x0
e−θḠ(x)Ḡ(x)2dx

)
+ x0e−θ

(∫∞
x0
e−θḠ(x)xg(x)dx

) .

Now since Ḡ(x) ≤ 1 and both integrands are positive,
∫∞
x0
e−θḠ(x)xg(x)Ḡ(x)dx ≤∫∞

x0
e−θḠ(x)xg(x)dx. In order to show that σG(θ) ≤ 1, it is suffi cient to show that

(43)

∫∞
x0
e−θḠ(x)Ḡ(x)dx

∫∞
x0
e−θḠ(x)xg(x)Ḡ(x)dx∫∞

x0
e−θḠ(x)xg(x)dx

∫∞
x0
e−θḠ(x)Ḡ(x)2dx

≤ 1.

Rearranging, and using the definition of εG(x), this inequality is equivalent to

(44)

∫∞
x0

(1/εG(x))e−θḠ(x)xg(x)dx∫∞
x0
e−θḠ(x)xg(x)dx

≤
∫∞
x0

(1/εG(x))e−θḠ(x)xg(x)Ḡ(x)dx∫∞
x0
e−θḠ(x)xg(x)Ḡ(x)dx

.

We can now apply Lemma 1, where α(x) = 1/εG(x), ϕ(x) = e−θḠ(x)xg(x), and
β(x) = Ḡ(x). We have α(x) ≥ 0, ϕ(x) ≥ 0 and β(x) ≥ 0. Since G is well-behaved,
ε′G(x) ≥ 0, so α′(x) ≤ 0 and β′(x) = −g(x) < 0. Using Lemma 1,∫∞

x0
(1/εG(x))ϕ(x)dx∫∞

x0
ϕ(x)dx

≤
∫∞
x0

(1/εG(x))ϕ(x)β(x)dx∫∞
x0
ϕ(x)β(x)dx

.

Lemma 1. Let α(.), β(.) and ϕ(.) be positive functions defined on [x0,∞). Suppose
that α′(x) ≤ 0 and β′(x) < 0. Then

∫∞
x0
α(x)h(x)dx ≤

∫∞
x0
α(x)ĥ(x)dx, where

h(x) ≡ ϕ(x)∫∞
x0
ϕ(x)dx

and ĥ(x) ≡ ϕ(x)β(x)∫∞
x0
ϕ(x)β(x)dx

.
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Since β′(x) < 0, β−1 exists and ĥ(x)− h(x) ≥ 0 holds if and only if

x ≤ xc ≡ β−1

(∫∞
x0
ϕ(x)β(x)dx∫∞
x0
ϕ(x)dx

)
,

for some critical value xc ∈ [x0,∞). Now for any x ∈ [x0, xc], ĥ(x) − h(x) ≥ 0 and
α(x) ≥ α(xc) since α′(x) ≤ 0, so

(45)
∫ xc

x0

α(x)(ĥ(x)− h(x))dx ≥
∫ xc

x0

α(xc)(ĥ(x)− h(x))dx.

For any x ∈ [xc,∞), α(x) ≤ α(xc) since α′(x) ≤ 0, but here ĥ(x)− h(x) ≤ 0, so

(46)
∫ ∞
xc

α(x)(ĥ(x)− h(x))dx ≥
∫ ∞
xc

α(xc)(ĥ(x)− h(x))dx.

Using inequalities (45) and (46), we have∫ ∞
x0

α(x)(ĥ(x)− h(x))dx

=

∫ xc

x0

α(x)(ĥ(x)− h(x))dx+

∫ ∞
xc

α(x)(ĥ(x)− h(x))dx

≥
∫ xc

x0

α(xc)(ĥ(x)− h(x))dx+

∫ ∞
xc

α(xc)(ĥ(x)− h(x))dx

= α(xc)

(∫ ∞
x0

ĥ(x)dx−
∫ ∞
x0

h(x)dx

)
= 0.

We now prove that for any distribution G, the elasticity of substitution σG(θ)
converges to one in the limit as θ →∞. Starting with (42) and letting t = 1−G(x),
so x = G−1(1− t) for t ∈ (0, 1], we have

(47) σG(θ) =

(∫ 1

0
e−θt

(
t

g(G−1(1−t))

)
dt+ x0e

−θ
)(∫ 1

0
e−θttG−1(1− t)dt

)
(∫ 1

0
e−θtG−1(1− t)dt

)(∫ 1

0
e−θt

(
t2

g(G−1(1−t))

)
dt+ x0e−θ

) .
Rearranging (47), we have

σG(θ) =

(∫ 1

0
e−θt

(
G−1(1− t) t

g(G−1(1−t))G−1(1−t)

)
dt+ x0e

−θ
)(∫ 1

0
e−θttG−1(1− t)dt

)
(∫ 1

0
e−θtG−1(1− t)dt

)(∫ 1

0
e−θt

(
tG−1(1− t) t

g(G−1(1−t))G−1(1−t)

)
dt+ x0e−θ

) .
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Now define f1(t) = G−1(1 − t) and f2(t) = t
g(G−1(1−t))G−1(1−t) for t ∈ (0, 1], and let

f1(t) = f2(t) = 0 for t > 1. Then limθ→∞ σG(θ) is given by

(48) lim
θ→∞

σG(θ) = lim
θ→∞

(∫∞
0
e−θtf1(t)f2(t)dt+ x0e

−θ ) (∫∞
0
e−θttf1(t))dt

)(∫∞
0
e−θtf1(t)dt

) (∫∞
0
e−θttf1(t)f2(t)dt+ x0e−θ

) .
Let t0 ∈ (0, 1]. Multiplying each integral in (48) by θ and dividing both the numerator
and denominator by f1(t0)f2(t0) and t0f1(t0), we have

lim
θ→∞

σG(θ) = lim
θ→∞

(
θ
∫∞

0
e−θt f1(t)f2(t)

f1(t0)f2(t0)
dt+ θe−θ

f1(t0)f2(t0)

)(
θ
∫∞

0
e−θt tf1(t)

t0f1(t0)
dt
)

(
θ
∫∞

0
e−θt f1(t)

f1(t0)
dt
)(

θ
∫∞

0
e−θt tf1(t)f2(t)

t0f1(t0)f2(t0)
dt+ θe−θ

t0f1(t0)f2(t0)

) .
Using limit operations and applying the initial value theorem for Laplace transforms,

lim
θ→∞

σG(θ) =

(
limt0→0

f1(t0)f2(t0)
f1(t0)f2(t0)

+ 0
)(

limt0→0
t0f1(t0)
t0f1(t0)

)
(

limt0→0
f1(t0)
f1(t0)

)(
limt0→0

t0f1(t0)f2(t0)
t0f1(t0)f2(t0)

+ 0
) = 1.

We also prove that σG(θ) ≤ 1 is equivalent to the result that ηf (θ) is decreasing
in θ where ηf (θ) ≡ f ′G(θ)θ/fG(θ). Differentiating ηf (θ) with respect to θ,

(49)
d

dθ
ηf (θ) =

f ′′G(θ)θfG(θ) + f ′G(θ)fG(θ)− (f ′G(θ))2θ

fG(θ)2

and hence d
dθ
ηf (θ) ≤ 0 if and only if

(50) f ′′G(θ)θfG(θ) + f ′G(θ)fG(θ) ≤ (f ′G(θ))2θ.

Comparing the above with (41), inequality (50) is equivalent to σG(θ) ≤ 1 provided
that f ′′G(θ) < 0, which is true.

Finally, we prove that in the limit as θ → ∞, the output elasticity ηf (θ) → λG,
the extreme value tail index of G. By definition,

(51) lim
θ→∞

ηf (θ) = lim
θ→∞

f ′G(θ)θ

fG(θ)
,

and, using (36) and (39) and simplifying, we have

(52) ηf (θ) =

∫∞
x0
e−θ(1−G(x))(1−G(x))dx+ x0e

−θ∫ ∞
x0

e−θ(1−G(x))xg(x)dx

.
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Changing variables by letting t = 1−G(x), and rearranging, we have

(53) lim
θ→∞

ηf (θ) = lim
θ→∞

∫ 1

0
e−θt

(
G−1(1− t) t

g(G−1(1−t))G−1(1−t)

)
dt+ x0e

−θ∫ 1

0
e−θtG−1(1− t)dt

.

Defining f1(t) = G−1(1 − t) and f2(t) = t
g(G−1(1−t))G−1(1−t) for t ∈ (0, 1], where

f1(t) = f2(t) = 0 for t > 1, we obtain

(54) lim
θ→∞

ηf (θ) = lim
θ→∞

∫ 1

0
e−θtf1(t)f2(t)dt+ x0e

−θ∫ 1

0
e−θtf1(t)dt

.

Let t0 ∈ (0, 1]. Multiplying each integral in (54) by θ and dividing both the numerator
and denominator by f1(t0), we have

(55) lim
θ→∞

ηf (θ) = lim
θ→∞

θ
∫∞

0
e−θt f1(t)f2(t)

f1(t0)
dt+ x0θe−θ

f1(t0)

θ
∫∞

0
e−θt f1(t)

f1(t0)
dt

.

Using limit operations and applying the initial value theorem for Laplace transforms,

(56) lim
θ→∞

ηf (θ) =
limt0→0

f1(t0)f2(t0)
f1(t0)

+ 0

limt0→0
f1(t0)
f1(t0)

= lim
t0→0

f2(t0).

Changing variables again using t = 1−G(x) and f2(t) = t
g(G−1(1−t))G−1(1−t) , we have

(57) lim
θ→∞

ηf (θ) = lim
x→∞

1−G(x)

xg(x)
= lim

x→∞
εG(x)−1.

If G is well-behaved, then ε′G(x) ≥ 0 so εG(x)−1 is weakly decreasing in x. Also, for
all x ≥ 0 we have εG(x)−1 ≥ 0. Hence limθ→∞ ηf (θ) = limx→∞ εG(x)−1 = α for
some α ≥ 0. It is straightforward to show that limx→∞

d
dx

(εG(x)−1x) = α and thus
α = λG, the tail index of G, using Definition 4. Note that if Assumption 1 holds and
thus G has a finite mean, we have λG < 1 since well-behaved distributions have a finite
n− th moment if and only if λG < 1/n. Also, λG ≥ 0 since G has unbounded upper
support. Therefore λG ∈ [0, 1).

A.3 Derivation of expression (9). Since the zero profit condition can also
be expressed as q(θ)J = C, using (35) delivers

(58) J =
1

q(θ)

(∫ ∞
x0

e−θ(1−G(x))(1−G(x))dx+ e−θ (x0 − z)

)
,
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or, equivalently, using q(θ) = m(θ)/θ and rearranging,

(59) J =
1

m(θ)

∫ ∞
x0

θe−θ(1−G(x))

(
1−G(x)

xg(x)

)
xg(x)dx+

θe−θ

m(θ)
(x0 − z) .

Using definition (1) for εG(x) and the definition of He
G(x; θ), and defining µ(θ) ≡

θe−θ/m(θ), we obtain:

(60) J = πG(θ) + µ(θ) (x0 − z)

where πG(θ) =
∫∞
x0
εG(x)−1 x dHe

G(x; θ), as defined in (10).

A.4 Proof of Proposition 2. First of all, πG(θ)/pG(θ) is given by

(61)
πG(θ)

pG(θ)
=

∫∞
x0
εG(x)−1 x dHe

G(x; θ)∫∞
x0
x dHe

G(x; θ)
.

Using the definition of εG(x) and simplifying, we have

(62)
πG(θ)

pG(θ)
=

∫∞
x0
e−θ(1−G(x))(1−G(x))dx∫∞
x0
e−θ(1−G(x))xg(x)dx

.

We first prove that πG(θ)/pG(θ) is decreasing in θ. Letting Ḡ(x) = 1 − G(x) and
differentiating (62), we have
(63)
d

dθ

(
πG(θ)

pG(θ)

)
=
−
∫∞
x0
e−θḠ(x)(Ḡ(x))2dx∫∞

x0
e−θḠ(x)xg(x)dx

+

∫∞
x0
e−θḠ(x)Ḡ(x)dx

∫∞
x0
e−θḠ(x)xg(x)Ḡ(x)dx(∫∞

x0
e−θḠ(x)xg(x)dx

)2 .

Rearranging, d
dθ

(
πG(θ)
pG(θ)

)
≤ 0 if and only if

(64)∫ ∞
x0

e−θḠ(x)Ḡ(x)dx

∫ ∞
x0

e−θḠ(x)xg(x)Ḡ(x)dx ≤
∫ ∞
x0

e−θḠ(x)xg(x)dx

∫ ∞
x0

e−θḠ(x)(Ḡ(x))2dx,

which is equivalent to inequality (43) established in the proof of Proposition 1. There-

fore d
dθ

(
πG(θ)
pG(θ)

)
≤ 0 for all θ. Next, to determine limθ→∞

πG(θ)
pG(θ)

, (62) and (52) yield

(65)
πG(θ)

pG(θ)
= ηf (θ)−

x0e
−θ∫ ∞

x0

e−θ(1−G(x))xg(x)dx

.
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Since the second term on the right-hand side of (65) goes to zero as θ →∞, we have
limθ→∞

πG(θ)
pG(θ)

= λG using the fact that limθ→∞ ηf (θ) = λG by Proposition 1.

Expressing (12) using (62) and µ(θ) = θe−θ/m(θ), labor share is given by

(66) sL(θ;G) = 1−
(∫∞

x0
e−θ(1−G(x))(1−G(x))dx+ e−θ(x0 − z)∫∞

x0
e−θ(1−G(x))xg(x)dx

)
.

Letting Ḡ(x) = 1−G(x), and differentiating with respect to θ, we obtain
(67)

d

dθ
sL(θ;G) =

 (∫∞
x0
e−θḠ(x)Ḡ(x)2dx+ e−θ(x0 − z)

)(∫∞
x0
e−θḠ(x)xg(x)dx

)
−
(∫∞

x0
e−θḠ(x)Ḡ(x)xg(x)dx

)(∫∞
x0
e−θḠ(x)Ḡ(x)dx+ e−θ(x0 − z)

) 
(∫∞

x0
e−θḠ(x)xg(x)dx

)2 .

Now d
dθ
sL(θ;G) > 0 if and only if(∫ ∞
x0

e−θḠ(x)Ḡ(x)xg(x)dx

)(∫ ∞
x0

e−θḠ(x)Ḡ(x)dx

)
+ e−θ(x0 − z)

(∫ ∞
x0

e−θḠ(x)Ḡ(x)xg(x)dx

)
<

(∫ ∞
x0

e−θḠ(x)Ḡ(x)2dx

)(∫ ∞
x0

e−θḠ(x)xg(x)dx

)
+ e−θ(x0 − z)

(∫ ∞
x0

e−θḠ(x)xg(x)dx

)
.

Since Ḡ(x) < 1 for all x > x0, it suffi ces to show that(∫ ∞
x0

e−θḠ(x)Ḡ(x)xg(x)dx

)(∫ ∞
x0

e−θḠ(x)Ḡ(x)dx

)
≤
(∫ ∞

x0

e−θḠ(x)Ḡ(x)2dx

)(∫ ∞
x0

e−θḠ(x)xg(x)dx

)
,

which is identical to inequality (64) that is established above and applies to well-
behaved distributions. Next, we have limθ→∞

πG(θ)
pG(θ)

= λG from above and therefore,
using (12), we have

(68) lim
θ→∞

sL(θ;G) = 1− λG − (x0 − z) lim
θ→∞

µ(θ)

pG(θ)

and

(69) lim
θ→∞

µ(θ)

pG(θ)
= lim

θ→∞

θe−θ

fG(θ)
= 0

since e−θ → 0 and fG(θ)→∞ as θ →∞. Hence limθ→∞ sL(θ;G) = 1− λG.
Workers’effective bargaining power βG(θ) can be expressed as

(70) 1− βG(θ) = (1− sL(θ;G))

(
pG(θ)

pG(θ)− z

)
.
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Therefore, since d
dθ
sL(θ;G) > 0, to show that d

dθ
βG(θ) > 0 it suffi ces to show that

d
dθ

(
pG(θ)
pG(θ)−z

)
< 0, which is true since p′G(θ) > 0 by Lemma 2 below. Using (70), we

also have limθ→∞ βG(θ) = 1− λG since limθ→∞
pG(θ)
pG(θ)−z = 1.

A.5 Proof of Proposition 3. Before proving Proposition 3, we establish
the following lemma.

Lemma 2. If G is well-behaved, output per match pG(θ) is increasing in the
market tightness θ.

Suppose that G is well-behaved. Using the fact that pG(θ) = fG(θ)/m(θ) and
differentiating, we have p′G(θ) > 0 if and only if

(71) h(θ) ≡ f ′G(θ)θ

fG(θ)
− m′(θ)θ

m(θ)
> 0.

Since h(0) = 0, it suffi ces to prove h′(θ) > 0. Differentiating and simplifying (71)
using (49), we have h′(θ) > 0 iff

(72)
f ′′G(θ)θfG(θ) + f ′G(θ)fG(θ)− (f ′G(θ))2θ

fG(θ)2
>
e−θ(1− e−θ − θ)

(1− e−θ)2
.

Using (41) and the result that σG(θ) ≤ 1 for any well-behaved distribution G, the
left-hand side of (72) is greater than or equal to zero. So it suffi ces to show that
1− e−θ − θ < 0, which is easily verified for all θ > 0.

By the implicit function theorem, dθ
∗

dz
= −∂F/∂z

∂F/∂θ
where F (θ) =

∫ ∞
x0

e−θ(1−G(x))(1−

G(x))dx+ e−θ(x0 − z)− C. We have

(73) F ′(θ) = −
(∫ ∞

x0

e−θ(1−G(x)) (1−G(x))2 dx+ e−θ(x0 − z)

)
< 0.

Since z ≤ x0, we have

(74)
dθ∗

dz
=

−e−θ(∫∞
x0
e−θ(1−G(x))(1−G(x))2dx+ e−θ (x0 − z)

) < 0.

Also, dθ
∗

dC
= −∂F/∂C

∂F/∂θ
where ∂F

∂C
= −1. Using ∂F

∂θ
from above, we have

(75)
dθ∗

dC
=

−1(∫∞
x0
e−θ(1−G(x))(1−G(x))2dx+ e−θ (x0 − z)

) < 0.
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Now, since f ′G(θ) > 0 and u′(θ) < 0, the fact that dθ∗

dz
< 0 and dθ∗

dC
< 0 implies that

dy∗

dz
< 0, dy

∗

dC
< 0, du

∗

dz
> 0, and du∗

dC
> 0. Finally, since p′G(θ) > 0 by Lemma 2, the

fact that dθ∗

dz
< 0 and dθ∗

dC
< 0 implies that dp∗

dz
< 0 and dp∗

dC
< 0.

Starting with (66), and using (67) and (74),

ds∗L
dz

=
∂sL
∂θ

dθ∗

dz
+
∂sL
∂z

=

−e−θ
 (∫∞

x0
e−θḠ(x)Ḡ(x)2dx+ e−θ(x0 − z)

)(∫∞
x0
e−θḠ(x)xg(x)dx

)
−
(∫∞

x0
e−θḠ(x)Ḡ(x)xg(x)dx

)(∫∞
x0
e−θḠ(x)Ḡ(x)dx+ e−θ(x0 − z)

) 
(∫∞

x0
e−θḠ(x)Ḡ(x)2dx+ e−θ(x0 − z)

)(∫∞
x0
e−θḠ(x)xg(x)dx

)2

+
e−θ∫∞

x0
e−θḠ(x)xg(x)dx

.

where Ḡ(x) = 1−G(x). Simplifying and rearranging,
ds∗L
dz

> 0 if and only if(∫∞
x0
e−θḠ(x)Ḡ(x)xg(x)dx

)(∫∞
x0
e−θḠ(x)Ḡ(x)dx+ e−θ(x0 − z)

)
(∫∞

x0
e−θḠ(x)Ḡ(x)2dx+ e−θ(x0 − z)

)(∫∞
x0
e−θḠ(x)xg(x)dx

) > 0,

which is clearly true.
The effect of a change in z on workers’ effective bargaining power is given by

dβ∗

dz
= ∂β

∂θ
dθ∗

dz
+ ∂β

∂z
. Rearranging (70), we have

(76) βG(θ) = 1− (1− sL(θ;G))

(
pG(θ)

pG(θ)− z

)
.

It is clear that the direct effect of z on βG(θ) is negative, i.e. ∂β
∂z
< 0. Since ∂β

∂θ
> 0

and dθ∗

dz
< 0, the indirect effect is also negative and therefore dβ∗

dz
< 0.

A.6 Proof of constrained effi ciency. The social planner’s solution θP
satisfies the first-order condition f ′G(θ) − ze−θ = C, and the equilibrium θ∗ satisfies
(35). Substituting f ′G(θ) from (39) into the first-order condition, it is clear that θ∗ =
θP . Using (40), the second-order condition, f ′′G(θ) + ze−θ < 0, also holds.

A.7 Properties of the Lower Incomplete Gamma Function.

Fact 1. The function γ(s, x) satisfies: (i) the recurrence relation: γ(s, x) =
(s − 1)γ(s − 1, x) − xs−1e−x; (ii) ∂

∂x
γ(s, x) = xs−1e−x > 0; (iii) ∂

∂s
γ(s, x) =∫ x

0
ts−1e−t(ln t)dt; (iv) limx→∞ γ(s, x) = Γ(s); and (v) γ(1, x) = 1− e−x.

For standard properties such as Fact 1, see Andrews, Askey, and Roy (2000).
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Definition 6. For any s, x ∈ R+, ε(s, x) is the elasticity of γ(s, x) wrt x,

(77) ε(s, x) ≡ xse−x

γ(s, x)
.

Lemma 3. The elasticity ε(s, x) has the following properties: (i) ∂
∂s
ε(s, x) > 0;

(ii) ∂
∂x
ε(s, x) < 0; (iii) limx→0 ε(s, x) = s; and (iv) limx→∞ ε(s, x) = 0.

Proof of Lemma 3. Differentiating (77) with respect to s, we obtain

∂

∂s
ε(s, x) = xse−x

(∫ x
0

(lnx− ln t)ts−1e−tdt

γ(s, x)2

)
> 0.

Differentiating (77) with respect to x, we have

(78)
∂

∂x
ε(s, x) =

xs−1e−x

γ(s, x)

(
s− x− xse−x

γ(s, x)

)
< 0.

To see this, observe that ∂
∂x
ε(s, x) < 0 if and only if s − x < ε(s, x). Applying Fact

1 (i), this is true provided that x > γ(s + 1, x)/γ(s, x). Multiplying both sides by
xse−x and rearranging, this is true if and only if ε(s + 1, x) > ε(s, x), which follows
from ∂

∂s
ε(s, x) > 0. Parts (iii) and (iv) follow from L’Hôpital’s rule.

A.8 "Frictionless" benchmark economy. Suppose that we relax two key
frictions: (i) the fact that firms can approach only one worker; and (ii) the fact that
firms can hire only one worker. We consider only the limit economy where each firm
can approach a large number of workers and there is no restriction on the number of
workers a firm can hire.

Suppose that entering firms pay the cost C to enter but they can send out M
"offers" simultaneously. The number of "offers" received by each worker is a Poisson
random variable with parameter θM . Each worker produces output at the level of the
highest productivity x among the firms who approach that worker. For finite M, the
distribution of output per worker, HG(x; θ,M), is given by

(79) HG(x; θ,M) =

{
e
−θM

(
x
x0

)−1/λ
if x ∈ [x0,∞)

e−θM if x ∈ [0, x0)

Now consider the limit G0 of the distribution G as x0 → 0 and define the corre-
sponding endogenous distribution H0(x; θ) ≡ HG0(x; θ,M).33 To ensure that H0 is

indeed a cdf, we normalize M = x
−1/λ
0 . Clearly, in the limit as x0 → 0, we have

M → ∞. The endogenous distribution is given by H0(x; θ) = e−θx
−1/λ

for all

33This means that we also require z = 0 to satisfy the assumption that 0 ≤ z ≤ x0.
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x ∈ [0,∞), the Fréchet distribution.34 There is no mass point because there is no
unemployment in this limit. Output per capita is given by f(θ) = Γ(1− λ)θλ and we
obtain an exact Cobb-Douglas aggregate production function:

(80) Y = Γ(1− λ)KλL1−λ.

A.9 Proof of Proposition 4. By the implicit function theorem, we have
dθ∗

dλ
= −∂F/∂λ

∂F/∂θ
. Using (31), we have

(81) F (θ) = x0λθ
λ−1γ(1− λ, θ) + e−θ(x0 − z),

and differentiating with respect to θ and then using Fact 1 (i) yields

(82)
∂F

∂θ
= −

(
x0λθ

λ−2γ(2− λ, θ) + e−θ(x0 − z)
)
.

Applying Fact 1 (iii) and simplifying yields

∂F

∂λ
= x0θ

λ−1

(
γ(1− λ, θ) + λ

∫ θ

0

t−λe−t(ln θ − ln t)dt

)
.

Again using (82), plus the fact that
∫ θ

0
t−λe−t(ln θ − ln t)dt > 0, we have

(83)
dθ∗

dλ
=
x0θ

λ−1
(
γ(1− λ, θ) + λ

∫ θ
0
t−λe−t(ln θ − ln t)dt

)
x0λθ

λ−2γ(2− λ, θ) + e−θ(x0 − z)
> 0.

Also, the fact that du∗

dλ
< 0 follows from dθ∗

dλ
> 0 and u′(θ) < 0. Next, dy∗

dλ
=

∂f
∂θ

dθ∗

dλ
+ ∂f

∂λ
. Now f ′(θ) > 0 and dθ∗

dλ
> 0 so it suffi ces to show that ∂f

∂λ
> 0. Using Fact

1 (iii), we obtain

(84)
∂f

∂λ
= x0θ

λ

(∫ θ

0

t−λe−t(ln θ − ln t)dt

)
> 0.

Similarly, dp
∗

dλ
= ∂p

∂θ
dθ∗

dλ
+ ∂p

∂λ
. Since p′(θ) > 0 and dθ∗

dλ
> 0, it suffi ces to show that

∂p
∂λ
> 0, which follows from (84).

We have dθ∗

dx0
= −∂F/∂x0

∂F/∂θ
> 0 since ∂F

∂x0
= λθλ−1γ(1−λ, θ)+e−θ > 0, and therefore

du∗

dx0
< 0 also. The effect of x0 on output per capita is given by

dy∗

dx0
= ∂f

∂θ
dθ∗

dx0
+ ∂f

∂x0
.

Since f ′(θ) > 0 and dθ∗

dx0
> 0, it suffi ces to show that ∂f

∂x0
> 0, which is clearly true

since f(θ) = x0θ
λγ(1 − λ, θ). Finally, dp∗

dx0
= ∂p

∂θ
dθ∗

dx0
+ ∂p

∂x0
, where p′(θ) > 0 and

dθ∗

dx0
> 0, and ∂p

∂x0
> 0 is clear, hence dp∗

dx0
> 0.

34This approach is mathematically similar to that used in Eaton, Kortum, and Sotelo (2012)
and Oberfield (2013) to obtain exact Fréchet distributions.
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Next, since µ(θ)/p(θ) = ε(1− λ, θ)/x0 using Definition 6, we have

(85) s∗K = λ+

(
x0 − z
x0

)
ε(1− λ, θ)

where θ∗(λ) solves the zero profit condition

(86) x0λθ
λ−1γ(1− λ, θ) + (x0 − z)e−θ = C.

Rearranging (86) and substituting into the expression for capital share using Definition

6, we obtain s∗K = Cθ1−λ

x0γ(1−λ,θ) . Differentiating s
∗
K with respect to λ,

(87)
ds∗K
dλ

=
C

x0

(
∂

∂θ

(
θ1−λ

γ(1− λ, θ)

)
dθ∗

dλ
+

∂

∂λ

(
θ1−λ

γ(1− λ, θ)

))
.

Using Fact 1 (ii), we have

(88)
∂

∂θ

(
θ1−λ

γ(1− λ, θ)

)
=

(1− λ)θ−λ

γ(1− λ, θ) −
θ1−2λe−θ

γ(1− λ, θ)2
.

Applying Fact 1 (iii) and simplifying,

(89)
∂

∂λ

(
θ1−λ

γ(1− λ, θ)

)
=

−θ1−λ

γ(1− λ, θ)2

(∫ θ

0

t−λe−t(ln θ − ln t)dt

)
.

Letting B =
∫ θ

0
t−λe−t(ln θ − ln t)dt and then substituting (88) and (89) into (87),

(90)
ds∗K
dλ

=
Cθ−λ

x0γ(1− λ, θ)

(
(1− λ− ε(1− λ, θ)) dθ

∗

dλ
− θB

γ(1− λ, θ)

)
Applying Fact 1 (i) and Definition 6, and simplifying, we have

ds∗K
dλ

> 0 if and only if
dθ∗

dλ
> θB

γ(2−λ,θ) . Substituting in
dθ∗

dλ
from (83) and simplifying,

ds∗K
dλ

> 0 if and only if

(91) γ(2− λ, θ)γ(1− λ, θ) > B

(
x0 − z
x0

)
θ2−λe−θ.

Now suppose that x0−z
x0

< 1−λ
2−λ . To prove (91), it suffi ces to show

(92) γ(2− λ, θ)γ(1− λ, θ) > B

(
1− λ
2− λ

)
θ2−λe−θ.
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To prove this, we introduce a generalized hypergeometric function defined by

F2,2(a1, a2; b1, b2; z) ≡
∞∑
n=0

(a1)n(a2)n
(b1)n(b2)n

zn

n!
,

where (a)n ≡ Γ(a+n)
Γ(a)

, the Pochhammer symbol or ascending factorial function. Calcu-
lating the integral B, we have:

B = (ln θ)γ(1−λ, θ)−
[
(lnx)γ(1− λ, x)− x1−λ

(1− λ)2
F2,2(1− λ, 1− λ; 2− λ, 2− λ;−x)

]θ
0

.

As limx→0
x1−λ

(1−λ)2
F2,2(1− λ, 1− λ; 2− λ, 2− λ;−x) = limx→0(lnx)γ(1− λ, x) = 0,

(93) B =
θ1−λ

(1− λ)2
F2,2(1− λ, 1− λ; 2− λ, 2− λ;−θ).

Inequality (92) can now be stated purely in terms of generalized hypergeometric func-
tions using γ(x, z) = zxx−1F1,1(x;x + 1;−z), a standard identity (See, for example,
Andrews et al. (2000)). Rearranging, (92) is equivalent to

(94)
e−θF2,2(1− λ, 1− λ; 2− λ, 2− λ;−θ)

F1,1(1− λ; 2− λ;−θ)F1,1(2− λ; 3− λ;−θ) < 1.

To establish (94) and hence prove that ds∗K/dλ > 0, it suffi ces to prove Lemma 4.
Inequality (94) is the special case where a = 1− λ and x = θ.

Lemma 4. For any a ≥ 0 and any x > 0, we have

(95) e−xF2,2(a, a; a+ 1, a+ 1;−x) < F1,1(a; a+ 1;−x)F1,1(a+ 1; a+ 2;−x).

First, we use the following result found in Miller and Paris (2012) just after Eq.
(5.3), obtained by specialization of 9.1 (34) in Luke (1969),

(96) F2,2(a, f ; b, c;−x) =
∞∑
k=0

(a)k(c− f)k
(b)k(c)k

xk

k!
F1,1(a+ k; b+ k;−x).

Setting f = a and b = c = a+ 1 in (96), and using the fact that (1)k = k!,

F2,2(a, a; a+ 1, a+ 1;−x) =

∞∑
k=0

(a)k
(a+ 1)2

k

xkF1,1(a+ k; a+ 1 + k;−x).

Next, we apply Kummer’s first transformation, F1,1(y; z;−x) = e−xF1,1(z − y; z;x)
to all F1,1 terms. (See, for example, Andrews et al. (2000), [Eq. 4.1.11]). Replacing
F1,1(1; a+2;x) with its definition and cancelling the term e−2x on both sides, inequality
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(95) is equivalent to

(97)
∞∑
k=0

(a)k x
k

(a+ 1)2
k

F1,1(1; a+ 1 + k;x) < F1,1(1; a+ 1;x)
∞∑
k=0

xk

(a+ 2)k
.

Since all terms in both series are positive now, we can simply compare coeffi cients of
like powers of x. Inequality (97) holds provided that for all k ∈ N,

(98)
(a)k

(a+ 1)2
k

F1,1(1; a+ 1 + k;x) < F1,1(1; a+ 1;x)
1

(a+ 2)k
.

First, it is straightforward to verify that the following holds:

(a)k(a+ 2)k
(a+ 1)2

k

=
a(a+ k + 1)

(a+ 1)(a+ k)
≤ 1.

Also, F1,1(1; a+ 1 +k;x) < F1,1(1; a+ 1; x) for all k ∈ N since ∂F1,1(a1;b1;x)

∂b1
< 0. (See

Erdelyi, Magnus, Oberhettinger, and Tricomi (1953) for this derivative.)

A.10 Suffi cient conditions. We first provide a suffi cient condition under
which workers’effective bargaining power β∗ is decreasing in λ.

Proposition 5. If G is Pareto, workers’effective bargaining power β∗ is decreas-
ing in λ if labor share s∗L is decreasing in λ and, in addition, we have:

(99)
x0 − z
z

>
ηp∗(λ)

ηs∗K (λ)

where ηp∗(λ) ≡ dp∗

dλ
λ
p∗ and ηs∗K (λ) ≡ ds∗K

dλ
λ
s∗K
.

Using (70) and differentiating, we obtain

d

dλ
(1− β∗) =

ds∗K
dλ

(
p∗

p∗ − z

)
− zs∗K

(p∗ − z)2

(
dp∗

dλ

)
.

Rearranging, we have d
dλ

(1− β∗) > 0 if and only if(
p∗ − z
z

)
ds∗K
dλ

λ

s∗K
>
dp∗

dλ

λ

p∗
.

If labor share s∗L is decreasing in λ then
d
dλ

(1− β∗) > 0 if and only if

p∗ − z
z

>
ηp∗(λ)

ηs∗K (λ)
.
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Finally, since p∗ ≥ x0, a suffi cient condition for
d
dλ

(1− β∗) > 0 is (99).

Next, we provide suffi cient conditions for the effects of x0 on the labor share s∗L
and workers’effective bargaining power β∗.

Proposition 6. If G is Pareto,

(i) labor share s∗L is increasing in the minimum productivity x0 if and only if
the value of matching rents is not too high:

(100)
x0 − z
z

<
−1

ηε(θ
∗)εθ∗(x0)

where ηε(θ) ≡ d
dθ

(
µ(θ)
p(θ)

)
θ

µ(θ)/p(θ)
and ηθ∗(x0) ≡ dθ∗

dx0

x0
θ∗ ; and

(ii) workers’ effective bargaining power β∗ is increasing in the minimum pro-
ductivity x0 if condition (100) holds.

Differentiating s∗L with respect to x0, we obtain

ds∗L
dx0

= − z

x2
0

ε(1− λ, θ∗)−
(
x0 − z
x0

)(
∂ε(1− λ, θ)

∂θ

dθ∗

dx0

)
and therefore

ds∗L
dx0

> 0 if and only if

ε(1− λ, θ∗)
x0

(
z

x0

+

(
x0 − z
x0

)
∂ε(1− λ, θ)

∂θ

dθ∗

dx0

x0

ε(1− λ, θ∗)

)
< 0.

Simplifying, using ηε(θ) ≡ d
dθ

(
µ(θ)
p(θ)

)
θ

µ(θ)/p(θ)
and ηθ∗(x0) ≡ dθ∗

dx0

x0
θ∗ , we have

ds∗L
dx0

> 0

if and only if the following holds:

z

x0

+

(
x0 − z
x0

)
ηε(θ

∗)ηθ∗(x0) < 0,

using the fact that x0µ(θ)/p(θ) = ε(1 − λ, θ). Rearranging, ds
∗
L

dx0
> 0 if and only if

(100) holds. Finally, using (70) and differentiating, we obtain

d(1− β∗)
dx0

=
ds∗K
dx0

(
p∗

p∗ − z

)
+ s∗K

(
∂

∂θ

(
p(θ)

p(θ)− z

)
dθ∗

dx0

+
∂

∂x0

(
p∗

p∗ − z

))
.

We know that d
dθ

(
p(θ)
p(θ)−z

)
< 0 and dθ∗

dx0
> 0 from above. Also, ∂p

∂x0
> 0 so we have

∂
∂x0

(
p∗

p∗−z

)
< 0 and therefore d

dx0
(1 − β∗) < 0 provided that

ds∗K
dx0

< 0. Therefore, if

condition (100) holds, we obtain dβ∗

dx0
> 0.
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