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Abstract

Is in�ation more or less costly in economies where consumers have a greater
degree of informed choice about their purchases? To answer this question,
we introduce consumer choice into a competitive search model of monetary
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to trade. Consumers�preferences are given by private utility shocks. When
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1 Introduction

In January 2022, core in�ation in the U.S. reached 6.0%, its highest level since

1982.1 Since the early 1980s, the nature of retail trade has changed radically as

a result of various factors, including the rise of the internet. Less than 1% of the

U.S. population used the internet in 1990 compared to almost 90% in 2019.2 Not

only are more purchases made online today but consumers have a greater ability to

make informed choices about their purchases �both online and in store �due to the

increased availability of online information about brands and product features. This

raises the following question: Does a greater degree of informed choice by consumers

make economies more or less vulnerable to the negative e¤ects of in�ation?

To answer this question, we build a model that features both consumer choice

and monetary exchange. The model is rich enough to allow us to vary the extent to

which consumers can make informed choices about which goods to purchase. This

enables us to ask a precise question: How does the welfare cost of in�ation vary

with changes in the extent of consumers�informed choices? We �nd that a greater

degree of consumer choice signi�cantly increases the cost of in�ation. As a result,

economies in which buyers are more likely to be able to make informed choices �

for example, as a result of rising internet availability �may be more sensitive to the

e¤ects of lower levels of in�ation. This means that the same in�ation rate may be

more costly today �in terms of its negative welfare e¤ects �than in earlier decades.

When a consumer seeks to purchase a good, he or she generally chooses from a

number of goods that are available simultaneously from a range of competing sellers.

Discrete choice models with random utility shocks have been used extensively to

study this type of choice in the large literature following Anderson, De Palma,

and Thisse (1992), but these models do not feature monetary exchange. Search-

theoretic models have become the standard way of modelling the microfoundations

of monetary exchange, as surveyed in Lagos, Rocheteau, and Wright (2017), but

these models do not feature what we call consumer choice, i.e. buyers�choice of

seller. Typically, buyer-seller meetings are bilateral: each buyer meets at most one

seller during a single period of time and chooses to either trade or wait.

1U.S. Bureau of Labor Statistics, Consumer Price Index for All Urban Consumers: All Items
in U.S. City Average [CPIAUCSL], retrieved from FRED.

2World Bank, Internet Users for the United States [ITNETUSERP2USA], retrieved from FRED.

1



To develop a model that features both consumer choice and monetary exchange,

we introduce the possibility of consumer choice into the monetary framework of

Rocheteau and Wright (2005), hereafter denoted RW. This framework shares the

convenience of the Lagos andWright (2005) alternating structure and it also features

endogenous seller entry. We focus on competitive search equilibrium. Buyers and

sellers choose to enter submarkets in which terms of trade, or contracts, are posted

by market makers. After entering a submarket, buyers and sellers commit to trading

at the terms posted in that submarket. Within each submarket, there are search

frictions that govern how buyers and sellers meet.

Directed or competitive search is a natural alternative to bargaining in the envi-

ronment we consider because buyers can meet multiple sellers within a single meet-

ing. At the same time, it is a natural benchmark for welfare analysis since directed

or competitive search is often used to decentralize the constrained e¢ cient alloca-

tion in search-theoretic environments, as discussed in Wright, Kircher, Julien, and

Guerrieri (2021). Moreover, since the cost of in�ation is generally much lower when

prices are determined by competitive search instead of bargaining, our estimates of

the cost of in�ation are conservative and can be interpreted as lower bounds.

Our model has two main features that are necessary for consumer choice.

First, search frictions within submarkets are modelled using a meeting technology

that features many-on-one meetings (sometimes called multilateral). During any

given period of time, each seller meets exactly one buyer, but a buyer may meet

many sellers. In particular, a buyer can meet either no sellers, one seller, or more

than one sellers, but they can trade with only one seller in each period. A meeting

is an opportunity for buyers to choose one seller from a subset of sellers.

Second, after a meeting takes place, nature draws an i.i.d. preference or utility

shock speci�c to each seller in the meeting. The buyer then chooses to purchase

from the seller that maximizes their net utility. The pair consisting of a buyer and

their chosen seller is called a match. Sellers cannot observe buyers�utility shocks;

they are private information for the buyer. We sometimes refer to the realization

of a shock as the good�s quality, but it is really perceived quality (or �suitability�)

since it is an idiosyncratic preference or �taste�shock.

A buyer�s choice of seller is in�uenced by the information available to the buyer

at the time this choice is made. We allow for two possibilities. With probability

� 2 (0; 1], buyers observe the seller-speci�c utility shocks before choosing a seller. In
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such cases, we say that buyers make an informed choice of seller. With probability

1 � �, buyers observe the shock after choosing a seller but prior to trade. In such

cases, buyers simply randomize across sellers. This �exibility allows us to examine

the e¤ect of a change in the extent of consumer choice, i.e. the degree of choice �.

An important consequence of consumer choice is that the distribution of utility

shocks of chosen goods is endogenous and depends on the seller-buyer ratio. More

sellers per buyer means that each buyer can choose from a greater number of sellers

(on average), which increases the average quality of the goods that are actually

chosen by buyers in equilibrium. As a result, both the average quality of a chosen

good and the average surplus depends directly on the seller-buyer ratio.

After choosing a seller with whom to trade, buyers choose the quantity of the

good to purchase and make the corresponding payment. We focus on incentive-

compatible direct revelation mechanisms that induce buyers to reveal their private

information to their chosen seller. We establish the existence and uniqueness of

equilibrium for any degree of consumer choice �. In equilibrium, there is only one

active submarket and sellers o¤er the same non-linear price schedule that speci�es

both the quantity traded and the payment in real dollars for any given realization of

the buyer�s utility shock. Within any meeting, trades may or may not be liquidity

constrained. Buyers may spend all of their money, some of their money, or none.

After presenting our key analytic results, we quantify the e¤ect of consumer

choice on the welfare cost of in�ation. We calibrate the model to match data from

Lucas and Nicolini (2015) on money demand in the U.S. from 1915-2008. For our

baseline calibration, we target a retail markup of 30% as in Berentsen, Menzio,

and Wright (2011), which implies a degree of choice � = 0:54. That is, 54% of all

meetings are ones in which consumers make an informed choice of seller.

We estimate that the welfare cost of going from 0% to 10% in�ation is equivalent

to 0.93% of consumption at our baseline calibration. To determine the e¤ect of

consumer choice on the welfare cost of in�ation, we vary the degree of choice � and

recalibrate the model using the same calibration strategy for the other parameters.

In particular, we compare results for the full choice calibration (i.e. � = 1) and

the random choice calibration (i.e. the limit as � ! 0). We estimate that the cost

of increasing in�ation from 0% to 10% is more than twice as high with full choice:

1.45% of consumption compared to 0.61% with random choice. Moreover, we �nd

that the cost of in�ation is strictly increasing in the degree of choice �.
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An alternative way to measure the welfare cost of in�ation is to ask: What level

of in�ation leads to a welfare cost of 1% (compared to 0% in�ation)? At our baseline

calibration, this in�ation rate is 11%. With full choice, this in�ation rate is 7%, and

with random choice, this in�ation rate is 28%. This suggests that while consumers

are better o¤ in economies that feature a greater degree of informed choice, they are

signi�cantly more vulnerable to experiencing the negative welfare e¤ects of in�ation.

In our model, consumer choice makes in�ation more costly because it ampli�es

the negative e¤ects of in�ation. With random choice, in�ation is costly because

buyers hold less money when in�ation is higher, which leads to lower quantities

traded and lower entry of sellers, which reduces the number of trades. When there is

consumer choice, all of these e¤ects continue to hold. However, there is an additional

e¤ect of in�ation: lower seller entry directly reduces the average quality of chosen

goods, which a¤ects welfare by reducing the average match surplus directly (as well

as indirectly through quantities). This is because the distribution of chosen goods is

endogenous and depends on the seller-buyer ratio when there is choice. In turn, the

e¤ect of in�ation on the distribution of chosen goods ampli�es the negative e¤ects

of in�ation on money holdings, quantities traded, and seller entry.

Outline. Section 2 discusses the related literature. Section 3 describes the

model. Section 4 solves the planner�s problem. Section 5 describes competitive

search equilibrium and establishes existence and uniqueness of equilibrium. Section

6 presents our key analytic results. Section 7 presents our baseline calibration and

some comparative statics. Section 8 provides our estimates of the cost of in�ation.

Section 9 describes the results of some robustness exercises. Section 10 concludes.

The Appendix contains our random choice and full choice calibrations. All proofs

are in the Online Appendix, which also contains the comparative statics �gures.

2 Related literature

As discussed, our model builds on the environment in RW, which shares the

alternating centralized and decentralized markets of Lagos and Wright (2005) but

features endogenous seller entry. In RW, the focus is on comparing di¤erent market

structures (e.g. bargaining and competitive search) that feature bilateral meetings,

while our paper examines the e¤ect of consumer choice on the cost of in�ation.
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There is a large literature on the welfare cost of in�ation. Rocheteau and Nosal

(2017) provides a summary of estimates of the welfare cost of 10% in�ation, which

vary from 0.2% to 7.2% of consumption. Cooley and Hansen (1989) estimates the

cost of 10% in�ation is less than 0.5% of consumption, while Lucas (2000) estimates

that it is less than 1%. Lagos and Wright (2005) �nds that the cost of 10% in�ation

is between 3% and 5% of consumption in a monetary model with search and bar-

gaining. In competitive search equilibrium, the cost of in�ation is typically much

lower than under bargaining, e.g. Rocheteau and Wright (2009) estimates the cost

of 10% in�ation is between 0.67% and 1.1% of consumption.3 Recently, Bethune,

Choi, and Wright (2020) obtains a relatively low estimate for the cost of in�ation �

around 1% or less �by identifying a positive market-composition e¤ect of in�ation.

Our paper is related to the wide literature on directed and competitive search

surveyed in Wright et al. (2021). In particular, we contribute to the literature on

directed or competitive search and private information, including Faig and Jerez

(2005), Menzio (2007), Guerrieri (2008), Guerrieri, Shimer, and Wright (2010),

Moen and Rosen (2011), and Davoodalhosseini (2019). In our environment, both

buyers and sellers are ex ante identical and buyers�private utility shocks are realized

after meetings take place. Importantly, meetings are many-on-one in our environ-

ment, allowing buyers to choose sellers within meetings. The sequential nature of

search in our model, in which buyers �rst choose a submarket using directed or

competitive search and then face a �noisy�process of choosing or matching among

the random subset of sellers they meet, shares some similarities with the model of

sequentially mixed search developed in Shi (2020). However, in our model buyers�

choice of seller within meetings is driven by private utility shocks rather than prices.

In our paper, buyers may or may not observe their utility shocks prior to their

choice of seller, allowing us to nest both informed choice and random choice within

meetings. The distinction between informed and random choice by buyers is remi-

niscent of the distinction between informed and uninformed buyers in Lester (2011).

However, the meaning of the term �informed� is di¤erent here. In our model, all

buyers observe price schedules and engage in directed or competitive search when

choosing submarkets, but within meetings buyers can either make an informed choice

of seller (i.e. observe utility shocks prior to choosing a seller) or not.

3Rocheteau and Wright (2009) use a slightly di¤erent formulation to calibrate the model in
RW. Instead of seller entry, agents can decide whether to be buyers or sellers.
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Related papers that feature many-on-one or multilateral meetings in monetary

environments include Julien, Kennes, and King (2008) and Galenianos and Kircher

(2008). Julien et al. (2008) introduces multilateral meetings and directed search into

the framework of Shi (1995) and Trejos and Wright (1995) with divisible goods and

indivisible money. Galenianos and Kircher (2008) develops a model featuring ex ante

heterogeneity, private information, and multilateral meetings in which indivisible

goods are allocated according to auctions in money holdings. In both Julien et al.

(2008) and Galenianos and Kircher (2008), sellers can meet multiple buyers and

either money or goods are indivisible. In our paper, by contrast, buyers can meet

multiple sellers and both money and goods are divisible.4

While we study the e¤ects of consumer choice, some related papers consider mon-

etary environments featuring buyer preference shocks that are private information.

Ennis (2008) incorporates private, match-speci�c buyer preference shocks into the

monetary framework of Lagos and Wright (2005). Faig and Jerez (2006) and Dong

and Jiang (2014) examine the e¤ect of in�ation on the extent of quantity discounts

when buyers�valuations are private information, thus extending the theory of non-

linear pricing in Maskin and Riley (1984). Faig and Jerez (2006), which builds on

Faig and Jerez (2005), is e¤ectively a special case of our model in which there is no

seller entry or consumer choice, no individual rationality (IR) constraint, and the

distribution of utility shocks is uniform. Dong and Jiang (2014) considers a sim-

ilar environment that features an IR constraint and price posting with undirected

search. More recently, Choi and Rocheteau (2021) develops a search model of retail

banking in which consumers�liquidity needs are private information. All of these

papers feature bilateral meetings without consumer choice.5

4An alternative approach is Head and Kumar (2005), which combines the monetary search
framework of Shi (1997, 1999) with the price-posting mechanism of Burdett and Judd (1983),
which allows buyers to observe a random sample of prices posted by sellers and choose the lowest
price. See also Herrenbrueck (2017), which extends the framework of Head and Kumar (2005).

5In a monetary search model without private information, Dong (2010) considers the e¤ect of
product variety on the welfare cost of in�ation when �rms can invest to expand product variety.
Greater product variety increases welfare by increasing the probability of trade in bilateral meetings.
Dong (2010) �nds the e¤ect of endogenous product variety on the cost of in�ation is negligible
with competitive search. In a related paper, Silva (2017) incorporates endogenous product variety
into a monetary search model featuring monopolistic competition.
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3 Model

Time is discrete and continues forever. Each period t 2 f0; 1; 2; ::::g is divided
into two subperiods as in Lagos and Wright (2005). During the day, there is a fric-

tionless, centralized market and at night there is a frictional, decentralized market.

As in RW, there is a continuum of agents divided into two types: buyers and sellers.

Buyers are ex ante identical and sellers are ex ante identical. The sets of buyers

and sellers are denoted B and S respectively. While all agents both produce and

consume during the day, buyers and sellers di¤er at night: buyers wish to consume

(but cannot produce) and sellers do not wish to consume (but can produce).

There is a �xed measure of buyers and we normalize jBj = 1. All buyers partici-
pate in the night market at zero cost, but there is an entry decision by sellers. Only

a subset �St � S of sellers of measure nt enter the night market. Sellers may or may

not choose to enter the night market at cost k > 0 and thus nt 2 R+ is endogenous.6

Since jBj = 1, the measure of sellers who enter, nt, is also the seller-buyer ratio.
Money is perfectly divisible. The aggregate money supply at date t is Mt 2 R+,

which grows at a constant rate  2 R+, i.e. Mt+1 = Mt. Money is either injected

into the economy ( > 1) or withdrawn ( < 1) by lump sum transfers during the

day. We assume these transfers are to buyers only, and we restrict attention to

policies where  � �; where � is the discount factor. When  = � (the Friedman

rule), we only consider equilibria obtained by taking the limit as  ! � from above.

In the day market, the price of goods is normalized to one and the relative price

of money is denoted by �t. The real value of a quantity of moneymt held by an agent

at date t is de�ned as zt � �tmt and the aggregate real money supply is Zt � �tMt.

We will focus on steady-state equilibria where all of the aggregate real variables are

constant. Since Mt+1=Mt = , this implies that in steady state �t+1=�t = 1=:

In the night market, prices are determined in competitive search equilibrium,

which we discuss in Section 5. The night market has some novel features that

enable the possibility of consumer choice.

Many-on-one meetings. A meeting is an opportunity for a buyer to choose
from among a subset of sellers. While all sellers meet exactly one buyer, a buyer can

meet possibly many sellers. In particular, each buyer can meet either no sellers, one

6We assume the set S is su¢ ciently large that nt � jSj always.
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seller, or more than one seller. The probability that a buyer meets N 2 f0; 1; 2; :::g
sellers is given by PN(n) = Pr(Ni = N) where PN(n) 2 [0; 1] and

P1
N=0 PN(n) = 1.

The endogenous probability �(n) that a buyer has the opportunity to trade equals

the probability that the buyer meets at least one seller, i.e. �(n) = 1�PN(0). Since
all sellers meet exactly one buyer, the probability that a seller has the opportunity

to trade equals �(n)=n, the probability that the seller�s good is chosen by a buyer.

Throughout the paper, we assume that PN(n) is Poisson, i.e. PN(n) = nNe�n

N !
for

all N 2 f0; 1; 2; :::g. Given the Poisson assumption, we have �(n) = 1� e�n.

Buyer�s choice of seller. After a meeting takes place, nature draws a seller-
speci�c random utility shock a for each seller the buyer meets. The buyer then

chooses a single seller with whom to trade in that subperiod.7 The pair consisting

of a buyer and their chosen seller is called a match.

There are two di¤erent possibilities with respect to buyers�information. With

probability � 2 (0; 1], the buyer observes their utility shocks before choosing a seller.
With probability 1 � �, the buyer observes their shock after choosing a seller but

before trade occurs. In the �rst case, we say that the buyer makes an informed

choice. In the second case, buyers simply randomize across sellers. We refer to �

as the degree of choice. We sometimes refer to the case where � = 1 as full choice

and the case where � 2 (0; 1) as partial choice. We refer to the limiting case where
� ! 0 as random choice since it is e¤ectively equivalent to a model with bilateral

meetings and random matching within submarkets.

Distribution of utility shocks. The random utility shocks a are drawn from

a bounded, continuous distribution with cdf G that is known to all agents. Im-

portantly, the realizations of the utility shocks are not observed by sellers; they

are private information for the buyer. For simplicity, we sometimes refer to a as

(perceived) quality, but it is intended to capture suitability or �t.

We assume that the distribution G is not degenerate and Assumption 1 is main-

tained throughout the paper. We later make some additional restrictions on the

distribution G in order to prove the existence of equilibrium.

Assumption 1. The distribution of utility shocks has a twice-di¤erentiable cdf G :
A! [0; 1], pdf g = G0 where G0 > 0, and bounded support A = [a0; �a] � R+.

7Similarly to standard discrete choice models, we assume that consumers choose to purchase
from a single �rm in each meeting.
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The distribution of utility shocks of the goods actually chosen by buyers, denoted
~G; is endogenous. Taking � 2 (0; 1] as given, for any n 2 R+ this distribution has
cdf ~G : A ! [0; 1], which depends on both the equilibrium seller-buyer ratio n and

the equilibrium choices made by buyers. For brevity, we refer to G simply as the

distribution of available goods and ~G as the distribution of chosen goods.

Buyer and seller utility. Sellers can produce on demand any quantity q 2 R+
of a divisible good and the cost of production is c(q), where c : R+ ! R+ and we
assume that c(0) = 0, c0(q) > 0; and c00(q) � 0 for all q > 0. A buyer who consumes
quantity q of a good with quality a receives utility au(q), where u : R+ ! R+ and
we assume that u(0) = 0, u0(0) =1; u0(q) > 0, and u00(q) < 0 for all q > 0:

The instantaneous utility of a buyer who meets a seller at night at date t is

(1) U bt = �(xt)� yt + �E ~Gt
(au(qa;t));

and the instantaneous utility of a seller who is chosen by a buyer at night at date t

is

(2) U st = �(xt)� yt � �E ~Gt
(c(qa;t));

where xt is the quantity consumed and yt is the quantity produced during the day,

qa;t is the quantity consumed at night, a is the quality of the good consumed, and
~Gt is the distribution of chosen goods at time t.

We assume � 0(x) > 0 and � 00(x) < 0 for all x, and that there exists x� such that

� 0(x�) = 1. For now, we normalize �(x�)� x� = 0:8

4 Planner�s problem

Before we consider competitive search equilibrium, we solve the planner�s prob-

lem. We assume the planner is constrained by the same search frictions and meeting

technology as the decentralized market. We also assume that the planner faces the

same information about utility shocks as buyers, i.e. the same probability � 2 (0; 1]
of observing these shocks prior to choosing a seller with whom the buyer will trade.

8Later, when we calibrate the model in Section 7, we will reverse this normalization.
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We say that the planner�s solution achieves the constrained e¢ cient allocation. For

brevity, we refer to this simply as the e¢ cient allocation.

Given the cost of seller entry k > 0; the planner chooses a seller-buyer ratio

n�, a function q� : A ! R+; and a distribution of chosen goods ~G : A ! [0; 1] to

maximize the total surplus created minus the total cost of seller entry, subject to

the constraints he faces. That is, the planner solves the following problem:

(3) max
n2R+;fqaga2A

�
�(n)

Z �a

a0

[au(qa)� c(qa)] d ~G(a;n)� nk

�
where ~G represents the planner�s optimal choice of seller for each buyer.9 The plan-

ner must take into account the fact that buyers�expected utility from consumption

in the night market depends not only on the meeting probability and the quantity

of goods traded, but also on the expected quality of the good purchased.

De�ne sa � au(qa) � c(qa), the trade surplus (or match surplus) for a good of

quality a. Let q�a denote the e¢ cient quantity of good a and de�ne s
�
a � au(q�a) �

c(q�a). Assume that s
�
0 � 0 where s�0 � a0u(q0) � c(q0) and q0 = q(a0), so there is

(weakly) positive trade surplus for all goods. De�ne the expected trade surplus by

(4) ~s(n; fqaga2A) �
Z �a

a0

[au(qa)� c(qa)]d ~G(a;n):

For simplicity of notation, throughout the paper we sometimes suppress the

dependence of the expected trade surplus ~s(n; fqaga2A) on the function q : A! R+
and let ~s(n) denote ~s(n; fqaga2A) and ~s0(n) denote @~s(n)=@n.
The following assumption ensures the existence of a social optimum where n� >

0. Intuitively, this condition says that the expected trade surplus in the limit as

n! 0, i.e. limn!0 ~s(n); must be greater than k.10 It follows from our assumptions

that, for all a 2 A, there exists a unique q�a 2 R+ such that au0(q�a) = c0(q�a).

Assumption 2. The cost of entry is not too high: EG[au(q�a)� c(q�a)] > k:

Before presenting the planner�s solution, we derive the endogenous distribution

of chosen goods. Lemma 1 provides some useful properties.

9The planner�s distribution of chosen goods will turn out to be equal to the buyers�distribution
of chosen goods so we use the same notation, ~G, for simplicity.
10Since ~G! G as n! 0, as veri�ed in Lemma 1, we have limn!0 ~s(n) = EG[au(q

�
a)� c(q�a)]
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The average quality of a chosen good is de�ned by ~aG(n) � E ~G(a), i.e. ~aG(n) =R �a
a0
ad ~G(a;n):11 Lemma 1 states that the average quality of a chosen good ~a(n) is

greater than the average quality of an available good, EG(a). Moreover, Part 6 of

Lemma 1 implies that ~a(n) is strictly increasing in n, i.e. ~a0(n) > 0. Intuitively,

average quality is increasing in the seller-buyer ratio because more sellers per buyer

means greater choice of seller and a higher expected quality of the chosen good.

Lemma 1. Suppose that the seller-buyer ratio n > 0.

1. For any � 2 (0; 1], the distribution of chosen goods is given by

(5) ~G(a;n) = �

�
e�n(1�G(a)) � e�n

1� e�n

�
+ (1� �)G(a):

2. In the limit as n! 0, we have ~G(a;n)! G(a) and ~a(n)! EG(a).

3. In the limit as n!1, we have ~G(a;n)! (1� �)G(a) for all a 2 [a0; �a) and
~a(n)! ��a+ (1� �)EG(a).

4. The distribution of chosen goods ~G(a;n) �rst-order stochastically dominates

the distribution of available goods G(a) and ~a(n) > EG(a).

5. If n1 > n2, the distribution ~G(a;n1) �rst-order stochastically dominates the

distribution ~G(a;n2) and ~a(n1) > ~a(n2).

6. For any f : A! R+ where f 0 > 0, ~f 0(n) > 0 where ~f(n) �
R �a
a0
f(a)d ~G(a;n).

We are now ready to describe the planner�s solution. Proposition 1 states that

there exists a unique social optimum (n�; fq�aga2A) with n� > 0 and provides the

necessary conditions for an e¢ cient allocation.

Proposition 1. There exists a unique social optimum (n�; fq�aga2A) and it satis�es:

1. For any a 2 A, the quantity q�a > 0 solves

(6) au0(q�a) = c0(q�a):

11For simplicity, we generally drop the subscript G and denote ~aG(n) simply by ~a(n).
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2. The seller-buyer ratio n� > 0 satis�es

(7) �0(n�)~s(n�; fq�aga2A) + �(n�)~s0(n�; fq�aga2A) = k:

3. For any � 2 (0; 1], the distribution of chosen goods is given by (5).

Equation (7) can be rewritten as a version of the generalized Hosios condition

derived in Mangin and Julien (2021). This condition generalizes the well-known

Hosios (1990) condition, which states that entry is constrained e¢ cient only if sellers�

surplus share equals the elasticity of the matching probability for buyers, �(n);

with respect to the seller-buyer ratio. De�ning the matching elasticity by ��(n) �
�0(n)n=�(n) and the surplus elasticity by �s(n) � ~s0(n)n=~s(n), condition (7) says

(8) ��(n)| {z }
matching elasticity

+ �s(n; fqaga2A)| {z }
surplus elasticity

=
nk

�(n)~s(n; fqaga2A)| {z }
sellers�surplus share

:

We have not yet discussed equilibrium, but it is useful to refer to the term on the

right as the sellers�surplus share. Given that our equilibrium features free entry of

sellers at cost k, sellers�total expected payo¤will be equal to the total cost of seller

entry, nk; and the total surplus created is �(n)~s(n). Therefore, the term on the

right will be sellers�surplus share in equilibrium. The generalized Hosios condition

(8) says that constrained e¢ ciency requires sellers�surplus share to be equal to the

matching elasticity plus the surplus elasticity.

Since s�a is increasing in a, Lemma 1 implies that the expected trade surplus

~s(n) is increasing in the seller-buyer ratio.12 Therefore, the surplus elasticity �s(n)

is positive. Intuitively, more sellers per buyer means greater choice for buyers, which

increases both the average quality of chosen goods and the quantities traded (since

q�a is increasing in a), thus increasing the average trade surplus. Equivalently, there

is a positive externality arising from the e¤ect of seller entry on the average surplus

when there is consumer choice. When the generalized Hosios condition (8) holds,

both the search externalities and this �choice externality�are internalized.

12It is established in the proof of Proposition 1 that both q�a and s
�
a are increasing in a.
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5 Competitive search equilibrium

Competitive search is an equilibrium concept developed in Moen (1997) and

Shimer (1996). A large literature on directed or competitive search has followed.

The basic idea is that either buyers or sellers, or market makers, can post prices

or contracts that specify the terms of trade o¤ered. Search is directed in the sense

that buyers and sellers choose which submarket to enter, where each submarket

corresponds to a particular speci�cation of the terms of trade. Commitment is key:

buyers and sellers who enter a submarket commit to trade at the terms speci�ed

within that submarket. Within each submarket, there are search frictions.

As in Rocheteau and Wright (2005), we assume there are agents called �market

makers�who can open submarkets by posting terms of trade or contracts.13 Market

makers take into account the expected relationship between the posted terms of trade

or contracts and the seller-buyer ratio n: In our environment, market makers post

contracts f(qa; da)ga2A which specify the quantity of the good qa and the payment
in real dollars da contingent on the buyer�s utility shock for their chosen seller.

Within each submarket, meetings take place, buyers choose sellers, and trade

occurs as described in Section 3.

Within meetings �and also within matches between each buyer and their chosen

seller �buyers�utility shocks are private information and they cannot be observed

directly by sellers. However, buyers may choose to reveal their private information

within matches through their choice of contract (qa; da) o¤ered by the chosen seller.

By the revelation principle, it is without loss of generality to focus on incentive-

compatible direct mechanisms f(qa; da)ga2A that induce buyers to truthfully reveal
their private information to their chosen sellers.

Within each period, the timing is as follows. At the start of each day, the market

makers announce the submarkets f(qa; da)ga2A that will be open that night, implying
an expected n for each submarket. During the day, agents trade in the centralized

market and readjust their real balances, and then choose a submarket in which to

trade at night, in a manner consistent with expectations. During the night, agents

trade goods and money in the decentralized market in their chosen submarket, where

they are bound by the posted contracts f(qa; da)ga2A in that submarket.
13While these �market makers�are not able to clear the market, we use this term in order to be

consistent with the terminology in Rocheteau and Wright (2005).
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Let 
 denote the set of open submarkets, where each submarket ! 2 
 is charac-
terized by (f(qa; da)ga2A; n)!: Let W b and W s denote the value functions for buyers

and sellers respectively in the day market, and let V b and V s denote the value

functions for buyers and sellers respectively in the night market.

Centralized market. In the CM, a buyer with real balance z solves:

(9) W b(z) = max
ẑ;x;y2R+

f�(x)� y + �V b(ẑ)g;

subject to ẑ + x = z + T + y; where T is her real transfer and ẑ is the real balances

carried forward into that period�s decentralized market. Substituting into (9) yields

(10) W b(z) = z + T + max
ẑ;x2R+

f�(x)� x� ẑ + �V b(ẑ)g:

Thus, the buyer�s ẑ is independent of z; and W b(z) = z +W b(0); which is linear.

Similarly, a seller with real balance zs in the centralized market solves:

(11) W s(zs) = max
ẑ;x;y2R+

�
�(x)� y + �max

�
V s(ẑ);W s

�
ẑ



���
;

subject to ẑ + x = zs + y: Substituting into (11), we obtain

(12) W s(zs) = zs + max
ẑ;x2R+

�
�(x)� x� ẑ + �max

�
V s(ẑ);W s

�
ẑ



���
:

Thus, the seller�s ẑ is independent of zs, and W s(zs) = zs +W s(0).

Decentralized market. The equilibrium distribution of chosen goods ~G is given

by buyers�optimal choices of sellers. In any meeting, the buyer chooses the seller

that maximizes va � au(qa)� da=, the buyer�s ex post trade surplus.

For a seller in the decentralized night market,

(13)

V s(zs) = max
!2


�
�(n)

n

Z �a

a0

�
�c(qa) +W s

�
zs + da


��
d ~G(a;n) +

�
1� �(n)

n

�
W s

�
zs


��
�k

where each submarket ! 2 
 is characterized by (f(qa; da)ga2A; n). A seller chooses
! among the set of open submarkets and has the opportunity to trade only if chosen.
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While all sellers meet exactly one buyer, the probability a seller is chosen is �(n)=n.

It is straightforward to verify that the seller�s choice of real balances is ẑ = 0.14

For a buyer in the decentralized night market,

(14)

V b(z) = max
!2


�
�(n)

Z �a

a0

1a

�
au(qa) +W b

�
z � da


��
d ~G(a;n) +

�
1� �(n)

Z �a

a0

1a d ~G(a;n)

�
W b

�
z



��
where 1a is an indicator function that is equal to one if z � da and zero otherwise.

A buyer chooses ! among the set of open submarkets and gets the opportunity to

trade if she meets at least one seller and has su¢ cient money z to pay the posted

da for her chosen good. If she either fails to meet a seller or does not have su¢ cient

money, she does not trade. Using W b(z) = z +W b(0) we obtain

(15) V b(z) = max
!2


�
�(n)

Z �a

a0

1a

�
au(qa)�

da


�
d ~G(a;n) +

z


+W b(0)

�
:

Thus, the buyer�s choice of z from (10) is given by

(16) max
z2R+

�
�z + �max

!2


�
�(n)

Z �a

a0

�
au(qa)�

da


�
d ~G(a;n) +

z



��
subject to the liquidity constraint, da � z for all a 2 A:
De�ning i � ��

�
, the nominal interest rate, the above problem is equivalent to

(17) max
z2R+; !2


�
�(n)

Z �a

a0

�
au(qa)�

da


�
d ~G(a;n)� i

z



�
;

subject to da � z for all a 2 A plus the constraint that a submarket with posted

contracts f(qa; da)ga2A will attract measure n of sellers per buyer, where n satis�es

(18)
�(n)

n

Z �a

a0

�
�c(qa) +

da


�
d ~G(a;n) � k

and n � 0 with complementary slackness. Due to buyers�private information, we

impose some additional constraints on problem (17), which we discuss next.

14Using W s(zs) = zs +W
s(0), (13) simpli�es to V s(zs) = zs= + V s(0). Substituting into (12),

the choice of ẑ is given by the �rst order condition �1 + �= � 0; where �1 + �= = 0 if ẑ > 0:
Since we only consider the case  = � by taking the limit as  ! � from above, ẑ = 0.
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5.1 Existence, uniqueness, and characterization

We focus on incentive-compatible direct mechanisms that induce buyers to reveal

their private information to their chosen sellers. Given this, we need to impose on

problem (17) two additional constraints: an incentive compatibility (IC) constraint

and an individual rationality (IR) constraint. The IR constraint for buyers is

(19) au(qa)�
da

� 0

for all a 2 A. This condition states that buyers must receive a (weakly) positive ex
post trade surplus, otherwise they will not trade. The IC constraint is given by

(20) au(qa)�
da

� au(qa0)�

da0



for all a; a0 2 A. Intuitively, this condition states that a buyer with utility shock a
cannot do better by choosing a contract (qa0 ; da0) instead of (qa; da):

We restrict attention to steady-state monetary equilibria where z > 0 and n > 0.

We will later prove that there is a unique solution to the market makers�problem

and thus there is only one active submarket in equilibrium. Anticipating this result,

we simply denote equilibrium by (f(qa; da)ga2A; z; n) and de�ne it as follows.

De�nition 1. A competitive search equilibrium is a list (f(qa; da)ga2A; z; n) and
a distribution of chosen goods f ~G(a;n)ga2A where (qa; da) 2 R2+ for all a 2 A;
~G(a;n) 2 [0; 1] for all a 2 A, and z; n 2 R+nf0g; such that (f(qa; da)ga2A; z; n)
maximizes (17) subject to constraint (18), the liquidity constraint da � z for all

a 2 A, plus the IR constraint (19) and the IC constraint (20), and f ~G(a;n)ga2A
represents buyers�optimal choices of sellers.

Lemma 2 tells us that there may exist a non-empty range of utility shocks a

such that trade does not occur in equilibrium, i.e. qa = 0. When the good chosen

by a buyer within a meeting falls within this range, we call such meetings no-trade

meetings. There may also exist a non-empty range of utility shocks such that buyers�

purchases are constrained by their money holdings, i.e. da = z. When the good

chosen by a buyer within a meeting falls within this range, we call such meetings

liquidity constrained. Outside of these ranges, we refer to meetings as unconstrained.
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Figure 1: Example of no-trade, unconstrained, and liquidity constrained ranges

Lemma 2. In any equilibrium where i > 0, there exist ab; ac 2 A such that

1. No-trade range: qa = 0 and da = 0 for all a 2 [a0; ab]:

2. Unconstrained range: qa > 0 and da < z for all a 2 (ab; ac):

3. Liquidity constrained range: qa = qac > 0 and da = z for all a 2 [ac; �a].

Before presenting Proposition 2, it will be useful to de�ne �(a;n) � 1� ~G(a;n),

the probability that a chosen good has quality greater than a. Applying Lemma 2,

the probability that a meeting results in trade is given by �(ab;n) = 1 � ~G(ab;n):

We also de�ne "�(a;n) � �a�0(a;n)=�(a;n), the elasticity of �(a;n) with respect to
a, where �0(a;n) � @�(a;n)

@a
. This elasticity can be calculated as follows:

(21) "�(a;n) =
a~g(a;n)

1� ~G(a;n)
:

For simplicity, we assume a0 = 0 throughout the rest of the paper. We also make

the following assumptions, which ensure the existence of equilibrium.

De�nition 2. The virtual valuation function  G : A! R is given by

(22)  G(a) � a� 1�G(a)

g(a)
:
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Assumption 3. The distribution is regular, i.e.  0G(a) > 0:

The requirement that the virtual valuation function is strictly increasing, i.e.

 0G(a) > 0, is known as regularity in the mechanism design literature.15

Assumption 4. The cost of entry is not too high: EG[au(q0a)� c(q0a)] > k.

Assumption 4 says the expected trade surplus in the limit as n ! 0 must be

greater than k, otherwise no sellers enter. Since ~G ! G as n ! 0 by Lemma 1,

limn!0 ~s(n) = EG[au(q
0
a)� c(q0a)] where q

0
a � limn!0 qa(n) is given by Lemma 3.16

Lemma 3. For all a 2 [a0; ab], q0a = 0 and, for all a 2 (ab; �a]; q0a satis�es

(23)
�
a� 1�G(a)

g(a)

�
u0(qa) = c0(qa)

where a0b 2 [a0; �a) is the unique solution to  G(a) = 0.

We can now present our main result, which establishes the existence and unique-

ness of equilibrium and provides a characterization. The requirement that G00(a) � 0
is a su¢ cient but not a necessary condition for existence.

Proposition 2. Suppose that G00(a) � 0 for all a 2 A. For any � 2 (0; 1] and i > 0,
there exists a unique competitive search equilibrium and it satis�es:

1. No-trade range. For any a 2 [a0; ab], qa = 0 and da = 0.

2. Unconstrained range. For any a 2 (ab; ac], the quantity qa > 0 solves:

(24) (a� �(a;n))u0(qa) = c0(qa)

where

(25) �(a;n) =

�
1� 1

�

� 
1� ~G(a;n)

~g(a;n)

!
�
�
1

�

�
i

�(n)~g(a;n)

15Regularity does not entail much loss of generality as this condition is weaker than both the
increasing hazard rate condition and log-concavity.
16Assumption 4 is more complicated than Assumption 2 because qa depends on n in equilibrium,

but the planner�s solution q�a is independent of n.
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and

(26) � =
1

1� "�(ab;n)

�
1 +

i

�(n)�(ab;n)

�
:

Also, da= = au(qa)�
R a
a0
u(qx)dx:

3. Liquidity constrained range. For any a 2 [ac; �a], qa = qac and da = dac :

4. The value of ac satis�es

(27)
Z �a

ac

(a�ac)~g(a;n)da = �
�
1� 1

�

�Z �a

ac

[ ~G(a;n)� ~G(ac;n)]da+
�
1

�

�
i�a

�(n)
:

5. Real money holdings z > 0 is given by z = dac :

6. The seller-buyer ratio n > 0 is strictly decreasing in k and satis�es

(28) �0(n)~s(n; fqaga2A) + �(n)~s0(n; fqaga2A) = k:

7. The zero pro�t condition is satis�ed:

(29)
�(n)

n

Z �a

a0

�
�c(qa) +

da


�
d ~G(a;n) = k:

8. For any � 2 (0; 1], the distribution of chosen goods is given by

(30) ~G(a;n) = �

�
e�n(1�G(a)) � e�n

1� e�n

�
+ (1� �)G(a):

The equilibrium distribution of chosen goods ~G is the same as the planner�s.

With probability � the buyer can observe the utility shocks a prior to choosing

a seller. In this case, buyers always choose the highest quality seller they meet.

The distribution of chosen goods therefore equals the distribution across buyers of

the highest quality a among the sellers a buyer meets, conditional on meeting at

least one seller. With probability 1 � �; the buyer observes the shock only after

choosing a seller. In this case, buyers randomize across the sellers they meet. The

distribution of chosen goods is therefore equal to the distribution of available goods,
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G: In general, for any � 2 (0; 1], the cdf of the equilibrium distribution ~G is a

weighted average of these two possibilities. In the limit as � ! 0, we have ~G! G:

A version of the generalized Hosios condition holds endogenously in our environ-

ment featuring competitive search since the equilibrium condition (28) is equivalent

in form to the planner�s condition (7). The only di¤erence between the equilibrium

condition (28) and the planner�s condition (7) is that the quantities qa traded in

equilibrium may be di¤erent than the e¢ cient quantities q�a. Since the expected

trade surplus ~s(n; fqaga2A) depends not only on the seller-buyer ratio n but also on
the quantities qa, seller entry is not necessarily e¢ cient. However, seller entry is

e¢ cient provided that the quantity traded is e¢ cient, i.e. qa = q�a for all a 2 A. Note
that in the limit as � ! 0, the standard Hosios condition applies.

In equilibrium, the endogenous value of ab may or may not be equal to a0. If

ab = a0, we refer to the equilibrium as full trade because all meetings result in

trade.17 Alternatively, if ab > a0; we refer to the equilibrium as partial trade.

6 Results

We �rst present some results regarding consumption and seller entry. Next, we

consider whether the Friedman rule restores e¢ ciency.

6.1 Consumption and seller entry

There are two margins for e¢ ciency: the intensive margin (related to quantity

traded or consumption) and the extensive margin (related to seller entry). To �x

terminology, we say that there is underconsumption of any good of quality a when-

ever the quantity traded in equilibrium is less than the e¢ cient quantity, i.e. qa < q�a,

and there is overconsumption whenever qa > q�a. We say that there is under-entry

of sellers whenever the equilibrium seller-buyer ratio is less than the e¢ cient ratio,

i.e. n < n�, and there is over-entry whenever n > n�.

Consumption. Consider expression (25), which gives us the equilibrium quan-
tities for the trading range that is unconstrained, a 2 (ab; ac]. Given that the e¢ cient
17While q0 = 0 since we assume a0 = 0, the distribution G is assumed to have no mass points

and therefore the probability that a0 is the quality of a chosen good is zero.
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quantity q�a satis�es au
0(q�a) = c0(q�a), it is clear that we have underconsumption if

�(a;n) > 0, overconsumption if �(a;n) < 0, and e¢ cient consumption if �(a;n) = 0:

To better understand expression (25), we can interpret it as a weighted average

of two terms, where the endogenous weights are 1=� 2 (0; 1] and 1� 1=� 2 [0; 1).

(31) �(a;n) =

�
1� 1

�

� 
1� ~G(a;n)

~g(a;n)

!
| {z }
weakly positive, �0

+

�
1

�

�
�i

�(n)~g(a;n)| {z }
negative, <0

Whether or not we have equilibrium overconsumption or underconsumption for a

good of quality a depends on the relative weights given to each of these two terms, as

well as their values at a. If the positive term dominates, we have underconsumption,

while if the negative term dominates we have overconsumption. If the two terms

exactly o¤set each other, we have e¢ cient consumption at quality a.

Proposition 3 describes the three possible equilibrium outcomes in terms of un-

derconsumption or overconsumption ranges for i > 0 (as depicted in Figure 2).

Proposition 3. Let au � maxfac; adg where ad � ac � �(ac); and let ap solve
~G(ap;n) = 1+

i
�(n)(1��) : For any i > 0, there are three possible equilibrium outcomes:

1. If ap � ac, there is underconsumption on (a0; ap), overconsumption on (ap; au),

and underconsumption on (au; �a].

2. If ap � ac; there is underconsumption on (a0; �a]:

3. If ab = a0; there is overconsumption on (a0; ad) and underconsumption on

(ad; �a].

Seller entry. Given that the generalized Hosios condition holds endogenously
under competitive search, we know that the equilibrium seller-buyer ratio n is ef-

�cient provided that the quantities traded qa are e¢ cient. However, the quantities

traded are not e¢ cient whenever i > 0 and therefore seller entry is not necessarily

e¢ cient. Proposition 4 states that there can be over-entry, under-entry, or e¢ cient

entry of sellers outside the Friedman rule. We can �nd examples of each possibility.

Proposition 4. In any equilibrium where i > 0, there may be either under-entry,

over-entry, or e¢ cient entry of sellers.
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Figure 2: Examples of the three cases of under/over consumption in Proposition 3

While we know that entry must be e¢ cient if the quantity traded is e¢ cient, the

converse is not true. There are examples where entry is e¢ cient but the quantities

traded are not. When this occurs, the e¢ ciency of entry is really just �coincidental�.

6.2 Does the Friedman rule deliver e¢ ciency?

In RW, there is e¢ ciency along both the intensive and extensive margins when

the Friedman rule is imposed. That is, both the quantity traded and the level of

entry of sellers are e¢ cient. In our environment, there can be ine¢ ciencies along both

margins at the Friedman rule. Importantly, these ine¢ ciencies are due to buyers�

private information, not the presence of consumer choice.

Corollary 1. At the Friedman rule (i! 0), for any � 2 (0; 1] equilibrium satis�es:

1. No-trade range. For any a 2 [a0; ab], qa = 0, and da = 0.

2. Unconstrained range. For all a 2 (ab; �a]; the quantity qa satis�es

(32)

 
a� "�(ab;n)

1� ~G(a;n)

~g(a;n)

!
u0(qa) = c0(qa):

Also, da= = au(qa)�
R a
a0
u(qx)dx:

3. No meetings are liquidity constrained: ac = �a:

4. Parts 5-8 from Proposition 2 hold.
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Proposition 5 says the Friedman rule delivers e¢ ciency if and only if the equi-

librium is full trade (i.e. ab = a0). First, it is clear from (32) that the e¢ cient

quantities are traded at the Friedman rule if and only if "�(ab;n) = 0, which is true

if and only if ab = a0 = 0. Second, the equilibrium condition (28) is equivalent to

the planner�s condition given the same function qa, i.e. given the quantities traded

are e¢ cient.

Proposition 5. At the Friedman rule, we have e¢ ciency, i.e. n = n� and qa = q�a

for all a, if and only if the equilibrium is full-trade (ab = a0).

Proposition 6 tells us that, in any partial-trade equilibrium where ab > a0, the

Friedman rule results in underconsumption, i.e. qa < q�a for all a 2 (a0; �a). Only for
two speci�c qualities of chosen goods, a0 and �a, are the e¢ cient quantities traded.

Proposition 6. At the Friedman rule, there is underconsumption for all a 2 (a0; �a)
if the equilibrium is partial-trade (ab > a0).

The reason why the Friedman rule does not yield e¢ ciency along the intensive

margin is not only because there is underconsumption in no-trade meetings. Even if

we consider meetings that do result in trade, there is underconsumption. Intuitively,

in any partial trade equilibrium, sellers need to compensate for the fact that there

is a range of meetings in which no trade occurs. Sellers compensate for the no-trade

meetings by charging higher prices over the trading range, which implies that less

than the e¢ cient quantity is consumed even within the trading range.

Given that there is underconsumption at the Friedman rule (unless ab = a0),

seller entry is not necessarily e¢ cient. There may be either under-entry or over-

entry of sellers. Therefore, the Friedman rule does not generally deliver e¢ ciency

along either the intensive or extensive margin.

Proposition 7. At the Friedman rule, there can be either under-entry, over-entry,
or e¢ cient entry of sellers.

In our baseline calibration in Section 7, there is over-entry of sellers, i.e. n > n�,

at the Friedman rule. We can also �nd examples of under-entry and e¢ cient entry.
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7 Calibration

We calibrate the model to match the data from Lucas and Nicolini (2015) on

money demand in the U.S. from 1915-2008.18 The period length is set to one year.

We set � = 1=(1 + r) to match a real interest rate of r = 0:03 as in Bethune et al.

(2020). We use the 3-month U.S. T-bill rate as a measure of the nominal interest

rate i. The average nominal interest rate i for the period 1915-2008 is i = 0:0383:

Money demand L(i) is de�ned as M1=GDP:

In the model, money demand is L(i) = z=Y where z is real money holdings and

Y is real GDP given by Y = x� + �(n) ~d(n); where x� is the quantity consumed

in the CM, ~d(n) �
R �a
a0

da

d ~G(a;n), the average payment for a chosen good, and

�(n) = 1� e�n, the probability a buyer has the opportunity to trade.

We assume that c(q) = q and u(q) = (q+�)1����1��
1�� where � 2 (0; 1) and � � 0.

The CM utility function is �(x) = A log x: Since � 0(x�) = 1; we have x� = A. We

assume the distribution of utility shocks G is uniform on [0; 1].

Parameter Target

DM utility curvature, 1� � 0.719 elasticity of money demand, �L -0.16
CM utility parameter, A 1.99 average money demand, L(i) 0.272
cost of entry, k 0.0184 buyers�surplus share, �(n) 0.50
degree of choice, � 0.54 decentralized market markup, �DM 1.30

Table 1: Baseline calibration

Baseline calibration. For our baseline calibration, we calibrate four parame-
ters (A; �; k; �) to match four targets. The target for the steady state level of money

demand in the model, L(i) where i = 0:0383, is equal to 0:272, the average money

demand in the data for 1915-2008. The target for the elasticity of money demand

L(i) with respect to i; denoted by �L; is equal to �0:16, the elasticity in the data for
1915-2008. Our third target is buyers�surplus share, de�ned by �(n) � ~v(n)=~s(n),

where ~v(n) �
R �a
a0
vad ~G(a;n) and va � au(qa) � da


. We treat �(n) as a proxy for

buyers�bargaining power and target �(n) = 0:5.19 Our fourth target is the markup

in the decentralized market. De�ning average quantity by ~q(n) �
R �a
a0
qad ~G(a;n),

18Lucas and Nicolini (2015) adjust the measure ofM1 to generate a stable money demand curve.
19Note that �(n) = � is the value of buyer�s surplus share that would deliver the same buyer/seller

shares as the Kalai (proportional) bargaining solution with parameter �.
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Figure 3: Data vs model predictions for money demand (by nominal interest rate i)

the average unit price is ~p(n) � ~d(n)=~q(n). The DM markup is de�ned by �DM �
~p(n)=c0(q), which is equal to the average price ~p(n) since we assume c(q) = q for

our calibration. We follow Berentsen et al. (2011) in targeting a DM markup of

�DM = 1:3 to re�ect a retail markup of 30%.

Discussion of calibration strategy. In the monetary search literature featur-
ing bargaining, buyers�bargaining power is a parameter and it is generally calibrated

to match either the DM markup or the aggregate markup. Since prices are deter-

mined in competitive search equilibrium in our model, we cannot do this because

buyers� surplus share is endogenous. However, it is important to ensure that we

�x buyers�surplus share when we compare calibrations for di¤erent values of � in

Section 8 because the cost of in�ation depends strongly on buyers�surplus share, as

discussed in Craig and Rocheteau (2008). Our strategy is to ensure that we ��x�

buyers�surplus share at steady state through our choice of k and match the DM

markup through our choice of �. Given that we can match the DM markup as a

separate target, the choice of target for buyers�surplus share is somewhat arbitrary,

hence we simply set �(n) = 0:5. In Section 9, we provide a robustness exercise where

we vary this target and show that our main result is preserved.

Table 2 provides a summary of the equilibrium outcomes for our baseline cali-

bration. The equilibrium features underconsumption of goods of all qualities (i.e.

there is no overconsumption). This is an example of the second case of equilibrium
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Figure 4: Data vs model predictions for money demand (by year)

described in Proposition 3 and depicted in the middle panel of Figure 2. The equi-

librium is also partial trade: around 23% of meetings do not result in any trade.

Around 33% of meetings and 26% of trades are liquidity constrained. Buyers spend

around 41% of their money holdings on average.

We do not target the output share of the decentralized market, but it is around

9%.20 We also do not target price dispersion, but it is close to the empirical estimates

in Kaplan and Menzio (2015). De�ning unit prices by pa � da=
qa

for all traded

goods (i.e. DM markup since c0(q) = 1), price dispersion is de�ned as the standard

deviation of normalized prices across all trades.21 Price dispersion is 25% at our

baseline calibration, which �ts well within the range of empirical estimates, 19% to

36%, found in Table 2 of Kaplan and Menzio (2015) and is equal to their estimate of

25% for the broader de�nition of goods which aggregates brands (but not sizes).22

Comparative statics. We provide some comparative statics results for the
cost of entry k; the in�ation rate � �  � 1, and the degree of choice �: Table 2
summarizes the e¤ects of a 1% increase in the parameters k;  � 1 + � ; and � from
20In the literature, values of the DM output share vary from less than 10% in Lagos and Wright

(2005) to 25% in Bethune et al. (2020) and 42% in Berentsen et al. (2011).
21Standard deviations are expressed as a percentage of the mean throughout the paper.
22We believe the �brand aggregation�measure in Kaplan and Menzio (2015) is the most relevant

since goods are not strictly identical in our environment where consumers experience idiosyncratic
utility or preference shocks that di¤er across goods.
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our baseline calibration. In Table 2, we can see that greater informed choice among

buyers increases seller entry, increases the average quality of a chosen good, and

increases the average quantity of goods purchased. Greater choice also increases

money holdings and the average payment, as well as increasing the average size of

the trade surplus. Buyers�surplus share does not change by much when we increase

the degree of choice by 1%, but it decreases slightly at the baseline calibration. The

average price or DM markup also decreases slightly at baseline. Total real output or

GDP and welfare (de�ned in Section 8) are both increasing in the degree of choice at

baseline. The Online Appendix contains some �gures to illustrate the comparative

statics over a wider range of parameter values.

Baseline 1 + � (" in�ation) k (" cost) � (" choice)
seller-buyer ratio, n 3.08 -2.3% -1.1% 0.9%
meeting prob, �(n) 0.95 -0.4% -0.2% 0.1%
average quality, ~a(n) 0.62 -0.4% -0.2% 0.3%
average quantity, ~q(n) 0.20 -7.3% -0.7% 0.9%
average payment, ~d(n) 0.26 -6.1% -0.5% 0.9%
money holdings, z= 0.60 -8.5% 0.1% 0.3%
average surplus, ~s(n) 0.12 -2.6% -0.5% 0.7%
buyer share, �(n) 0.50 -0.6% -0.6% -0.0%
price or markup, ~p(n) 1.30 1.3% 0.2% -0.0%
price dispersion 0.25 1.1% 0.6% -0.1%
total real output, Y 2.23 -0.7% -0.1% 0.1%
total welfare, W 0.43 -0.5% -0.2% 0.1%

Table 2: Equilibrium outcomes and comparative statics at baseline calibration

8 Welfare cost of in�ation

In this section, we present our estimates of the welfare cost of in�ation and show

how it varies with the degree of informed choice by consumers. We start by de�ning

total welfare in economy E by23

(33) W (E) = �(n)

Z �a

a0

[au(qa)� c(qa)]d ~G(a;n)� nk + �(x�)� x� + 1:

23Note that adding one is a normalization that ensures W (E) is positive for all calibrations we
consider. It does not a¤ect our estimates of the welfare cost of in�ation.
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Since consumers� utility depends on both quality and quantity, in order to cal-

culate the consumption sacri�ce in terms of quantity alone we �rst convert to a

welfare-equivalent �representative�economy in which the quantity of goods traded

is constant and quality is normalized to one. That is, we �nd quantity q such that

(34) W (E) = �(n)[u(q)� c(q)]� nk + �(x�)� x� + 1:

If total consumption is multiplied by a factor of � 2 [0; 1], then welfare is given by

(35) W (E;�) = �(n)[u(�q)� c(q)]� nk + �(�x�)� x� + 1:

We measure the welfare cost of moving from economy E to E 0 by the share of total

consumption that consumers are willing to give up in order to go from economy E 0

to E. That is, the cost is 1�� where � 2 [0; 1] satis�es W (E;�) =W (E 0):

We compute the welfare cost of 10% in�ation relative to both 0% in�ation and

the Friedman rule. In particular, we �nd �0 2 [0; 1] such thatW ( = 1;�0) is equal

toW ( = 1:1;� = 1): The value 1��0 is the percentage of total consumption that

consumers are willing to give up in order to go from 10% in�ation to 0% in�ation.

We also �nd �F 2 [0; 1] such that W ( = �;�F ) is equal to W ( = 1:1;� = 1):

The value 1� �F is the percentage of total consumption that consumers are willing

to give up in order to go from 10% in�ation to the Friedman rule.

8.1 How does consumer choice a¤ect the cost of in�ation?

As we would expect, consumer choice increases the level of welfare. Starting at

our random choice calibration, (� = 0), we estimate that increasing the degree of

choice to our baseline level (� = 0:54) delivers a welfare gain worth 1.58% of total

consumption. Similarly, starting at our baseline degree of choice (� = 0:54), an

increase in the degree of choice to � = 1 delivers a welfare gain worth 2.75% of total

consumption. The positive e¤ect of greater choice on welfare is intuitive. A greater

degree of informed choice by consumers increases both the average quality and the

average quantity traded, as well as increasing seller entry. However, the e¤ect of

choice on the welfare cost of in�ation is not clear.

Figure 5 illustrates how the welfare cost of in�ation varies with the degree of

choice �. For any given value of �; we recalibrate the parameters (A; �; k) to match
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Figure 5: Welfare cost of 0% to 10% in�ation for di¤erent values of � (recalibrated)

the �rst three targets of our baseline calibration. Figure 5 shows that the cost of

in�ation is strictly increasing with the degree of consumer choice �.

Table 3 provides our estimates of the welfare cost of in�ation. Recall that 1��0

(or 1 � �F ) denotes the welfare cost of moving from 0% (or the Friedman rule)

to 10% in�ation. We focus on comparing our baseline calibration (� = 0:54), full

choice calibration (� = 1), and random choice calibration (� = 0). Details of the

full choice and random choice calibrations can be found in Appendix A.

1��0 1��F
Random (� = 0) 0.61% 0.79%
Baseline (� = 0:54) 0.93% 1.11%
Full choice (� = 1) 1.45% 1.64%

Table 3: Welfare cost of in�ation (baseline, full choice, and random choice)

At our baseline calibration (� = 0:54), the cost of increasing in�ation from 0%

to 10% is 0.93% of consumption, while the cost of moving from the Friedman rule

to 10% in�ation is 1.11% of consumption. When we recalibrate the model after

imposing random choice (� = 0), the welfare cost of increasing in�ation from 0%

to 10% is 0.61% of consumption and the cost of moving from the Friedman rule to

10% in�ation is 0.79% of consumption. On the other hand, when we recalibrate the

model with full choice (� = 1), the cost of increasing in�ation from 0% to 10% is
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Figure 6: Welfare cost of 0% to � in�ation for di¤erent in�ation rates �

more than twice as high at 1.45% of consumption, while the cost of moving from

the Friedman rule to 10% in�ation is 1.64% of consumption.24

Figure 6 depicts the welfare cost of increasing in�ation from 0% to � for various

in�ation rates � at our baseline, random choice, and full choice calibrations. We can

see that a welfare cost of 1% of consumption requires an in�ation rate of around

11% in our baseline calibration. With random choice, a very high in�ation rate

of around 28% is required for the same welfare cost. With full choice, a relatively

low in�ation rate of around 7% delivers the same welfare cost. This suggests that

economies featuring a greater degree of informed choice can experience the same

extent of negative welfare e¤ects from lower levels of in�ation.

8.2 Why is the cost of in�ation higher with consumer choice?

To understand better the negative e¤ects of in�ation on welfare in our model,

Table 4 shows how the equilibrium outcomes change when the economy shifts from

either the Friedman rule or 0% in�ation to 10% in�ation at the baseline calibration.
24In Section 9, we show that our main result �greater choice increases the cost of in�ation �still

holds when we vary � and adjust k to match the target surplus share, while keeping the utility
parameters (A; �) at their baseline levels. This con�rms that the di¤erence in the welfare cost is
driven by variation in the degree of choice �, not by di¤erences across calibrations in either the
utility parameters (A; �) or the buyer surplus share �(n):
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We also include the e¢ cient outcomes (given baseline � = 0:54) for comparison.25

E¢ cient Friedman rule 0% in�ation 10% in�ation

seller-buyer ratio, n 3.26 3.28 3.13 2.46
meeting prob, �(n) 0.96 0.96 0.96 0.91
average quality, ~a(n) 0.63 0.63 0.62 0.60
average quantity, ~q(n) 0.35 0.27 0.21 0.11
average payment, ~d(n) - 0.33 0.27 0.16
money holdings, z= - 1.13 0.65 0.33
average surplus, ~s(n) 0.14 0.13 0.12 0.09
buyer share, �(n) - 0.51 0.50 0.46
price or markup, ~p(n) - 1.23 1.28 1.46
price dispersion - 0.24 0.25 0.27
total real output, Y - 2.31 2.25 2.13
total welfare, W 0.45 0.44 0.44 0.42

Table 4: Equilibrium outcomes at di¤erent in�ation rates (baseline calibration)

When the economy shifts from 0% to 10% in�ation, the seller-buyer ratio falls

by 21.4%. As a result, the meeting probability for buyers falls and average quality

drops by 3.4%. Money holdings fall dramatically by 48.8%, while average quantity

traded decreases by 49.2%, average payment falls by 42.3%, and average surplus

drops by 24.3%. As in�ation jumps from 0% to 10%, buyers�surplus share falls by

8.5%. The average price or DM markup rises by 13.7% and price dispersion rises by

9.6%. Total real output or GDP decreases by 5.2% and welfare falls by 4.5%.

The e¤ects of in�ation at our baseline calibration lie somewhere in between the

e¤ects at the two extremes of full choice (� = 1) and random choice (� = 0). To

see how the sensitivity of various equilibrium outcomes to changes in in�ation varies

with the degree of choice �, Table 5 compares the comparative statics e¤ect of a 1%

increase in the parameter 1 + � (for in�ation rate �) for our three calibrations.

As Table 5 shows, greater choice ampli�es the sensitivity of the economy to

changes in in�ation. First of all, it increases the sensitivity of seller entry to in�ation.

In response to a 1% increase in 1 + � , the seller-buyer ratio falls by 3.0% with full

choice compared to just 1.4% with random choice. Consumer choice also results in

a higher sensitivity of average quality to changes in in�ation, since average quality

is unchanged with random choice. At the same time, average quantity, average

payments and money holdings are also more sensitive to changes in in�ation when

25Notice that we have over-entry of sellers at the Friedman rule relative to the e¢ cient allocation.
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Random (� = 0) Baseline (� = 0:54) Full choice (� = 1)

seller-buyer ratio, n -1.4% -2.3% -3.0%
meeting prob, �(n) -0.7% -0.4% -0.0%
average quality, ~a(n) 0.0% -0.4% -0.5%
average quantity, ~q(n) -6.1% -7.3% -9.2%
average payment, ~d(n) -4.4% -6.1% -8.3%
money holdings, z= -7.3% -8.5% -9.7%
average surplus, ~s(n) -1.7% -2.6% -3.7%
buyer share, �(n) -1.1% -0.6% -0.8%
price or markup, ~p(n) 1.8% 1.3% 1.0%
price dispersion 1.5% 1.1% 1.3%
total real output, Y -0.3% -0.7% -1.6%
total welfare, W -0.3% -0.5% -0.9%

Table 5: E¤ect of a 1% increase in 1 + � (in�ation �) for baseline, full choice, random

there is greater choice. Finally, the sensitivity of average surplus to changes in

in�ation is ampli�ed by greater choice. In response to a 1% increase in 1 + � ,

average surplus falls by 3.7% with full choice compared to just 1.7% with random

choice. The e¤ects at baseline � fall somewhere in between these two extremes.

9 Robustness

In this section, we establish the robustness of our main result that the welfare

cost of in�ation is increasing in the degree of choice �. First, we consider how our

results change when we vary the target surplus share, which is �(n) = 0:5 for our

baseline calibration. Second, we present the results of two di¤erent experiments

where we shut down either endogenous seller entry or endogenous surplus shares.

9.1 E¤ect of surplus share target

Table 6 reports our estimates of the welfare cost of in�ation when we vary the

target value of buyers�surplus share and recalibrate the model using the same strat-

egy (for baseline, full choice, and random choice). When we vary the target surplus

share, baseline � also varies and equals the value �� that matches the DM markup.

While our exact estimates of the cost of in�ation depend on the target value of

buyers�surplus share, it is clear from Table 6 that the cost of in�ation is increasing
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in the degree of choice for every level of the target buyers�surplus share.

�(n) = 0:4 �(n) = 0:5 �(n) = 0:6

Random (� = 0) 0.25% 0.61% 0.81%
Baseline (� = ��) 0.55% 0.93% 0.94%
Full choice (� = 1) 0.90% 1.45% 1.65%

Table 6: Welfare cost of 0% to 10% in�ation for di¤erent values of target buyer share

Since we focus on competitive search, our estimates of the cost of in�ation can

be viewed as lower bounds when compared to environments featuring bargaining.

In such environments, the cost of in�ation is sensitive to changes in the bargaining

parameter. In Lagos and Wright (2005), the cost of in�ation decreases as buyers�

bargaining parameter � increases because the severity of the hold-up problem de-

creases as � ! 1. In environments such as ours that feature competitive search,

there is no hold-up problem. Buyers�surplus share is endogenous and depends cru-

cially on the equilibrium seller-buyer ratio. As Table 6 shows, the cost of in�ation

actually increases in our model as we increase the target for buyers�surplus share.

9.2 Results of experiments

Our main result regarding the e¤ect of choice on the welfare cost of in�ation does

not depend on either of two features of our model: (1) endogenous seller entry; and

(2) endogenous surplus shares. To demonstrate this, we conduct two experiments.

In the �rst experiment, we shut down endogenous seller entry by �xing the seller-

buyer ratio to n = �n. In the second experiment, we shut down endogenous surplus

shares by �xing buyers� surplus share to �(n) = ��.26 For both experiments, the

equilibrium conditions are the same as Proposition 2 except that entry cost k is

replaced by endogenous J (where J is equal to equilibrium expected seller utility

before entry cost). To calculate welfare, we use de�nition (33) and set k = 0.

Table 7 compares the cost of in�ation for our main model and the experiments.

We use the same calibration strategy as our main model except we treat �� or �n

as a calibrated parameter (instead of k). For our main results (a) in Table 7, we

26In one sense, Experiment 2 is similar to the �xed surplus shares in a model featuring bargaining.
However, it is di¤erent because we use competitive search and the equilibrium surplus shares are
always the e¢ cient ones (conditional on the quantities traded being e¢ cient). This is why we still
have relatively low costs of in�ation in Experiment 2 compared to bargaining models.
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recalibrate (A; �) to match the money demand targets when we vary � (as for Table

3). We also include an additional check (b) where we keep (A; �) at the baseline

parameters when we vary �. For both (a) and (b), we match the surplus share

target �(n) = 0:5 by adjusting k (or �� or �n) to ensure comparability of welfare costs.

Main model Exper 1 (n = �n) Exper 2 (�(n) = ��)

(a) Recalibrated (A; �)
Random (� = 0) 0.61% 0.58% 0.58%
Baseline (� = 0:54) 0.93% 0.87% 1.16%
Full choice (� = 1) 1.45% 1.22% 1.87%
(b) Baseline (A; �)
Random (� = 0) 0.52% 0.56% 0.56%
Baseline (� = 0:54) 0.93% 0.87% 1.16%
Full choice (� = 1) 1.14% 0.96% 1.53%

Table 7: Welfare cost of 0% to 10% in�ation for main model and experiments

With random choice, the cost of in�ation is the same for both experiments be-

cause �xing �(n) = �� and �xing n = �n are equivalent. This is because the standard

Hosios condition applies under random choice, i.e. ��(n) = 1 � �(n). However,

whenever � > 0 and there is some degree of consumer choice, the generalized Hosios

condition applies, i.e. ��(n) + �s(n; fqaga2A) = 1� �(n); and �xing the seller-buyer
ratio is not equivalent to �xing the surplus shares. As a result, the welfare cost of

in�ation di¤ers across these two experiments when there is consumer choice.

For both experiments, Table 7 (a) shows that our main result �greater choice

increases the welfare cost of in�ation �is con�rmed when we vary � and recalibrate

(A; �) using the same strategy as our baseline calibration. For Experiment 1 (ex-

ogenous n), the cost of in�ation is around twice as high with full choice compared

to random choice. For Experiment 2 (�(n) exogenous), the cost of in�ation is more

than three times as high with full choice compared to random choice.

Table 7 (b) shows that, for both our main model and both of our experiments,

our result that greater choice increases the cost of in�ation also holds when we vary

� and adjust k to match the target surplus share, but keep the utility parameters

(A; �) equal to the baseline parameters. This con�rms that, in all three cases,

the di¤erence in the welfare cost of in�ation is not due to changes in the utility

parameters (A; �), or di¤erences in the buyer surplus share �(n); across calibrations

for di¤erent �, but is instead due to variation in the degree of choice �.
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10 Conclusion

In�ation in the U.S. has reached its highest level for forty years. During this

period, the nature of retail trade has changed radically. As a result of the rise of the

internet since the 1990s, consumers today face much greater availability of online

information about brands and products prior to making purchases. This paper asks

the question: How does consumer choice a¤ect the welfare cost of in�ation?

To answer this question, we introduce consumer choice into a search-theoretic

model of monetary exchange. We �nd that a greater degree of informed choice

by consumers makes in�ation signi�cantly more costly for an economy. This sug-

gests that while consumers bene�t greatly from the ability to make more informed

choices about their purchases, this feature of the economy also makes consumers

more vulnerable to the negative welfare e¤ects of in�ation.

In future work, we believe it would be interesting to examine in more detail the

complex interactions between private information and consumer choice in environ-

ments with monetary exchange. We also believe it would be interesting to use our

model of consumer choice and monetary exchange to further explore the implica-

tions of changes in the structure of retail trade � for example, the rise of online

transactions and various online platforms �for monetary policy.
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Appendix

Appendix A: Full choice and random choice calibrations

For the full choice calibration, we set � = 1 and then calibrate the remaining

three parameters (A; �; k) to match the �rst three targets of our baseline calibration.

Table 8 reports the calibrated parameters and targets.

Parameter Target

DM utility curvature, 1� � 0.815 elasticity of money demand, �L -0.16
CM utility parameter, A 1.75 average money demand, L(i) 0.272
cost of entry, k 0.0081 buyers�surplus share, �(n) 0.50

Table 8: Full choice calibration (� = 1)

Table 9 summarizes the equilibrium outcomes and the comparative statics e¤ects

of a 1% increase in the parameters k;  � 1+� , and � for the full choice calibration.27

Baseline 1 + � (" in�ation) k (" cost) � (" choice)
seller-buyer ratio, n 7.09 -3.0% -0.9% 1.0%
meeting prob, �(n) 1.00 -0.0% -0.0% 0.0%
average quality, ~a(n) 0.86 -0.5% -0.1% 0.6%
average quantity, ~q(n) 0.36 -9.2% -0.8% 1.8%
average payment, ~d(n) 0.41 -8.3% -0.7% 1.7%
money holdings, z= 0.58 -9.7% -0.1% 0.5%
average surplus, ~s(n) 0.11 -3.7% -0.5% 1.4%
buyer share, �(n) 0.50 -0.8% -0.7% 0.4%
price or markup, ~p(n) 1.16 1.0% 0.1% -0.1%
price dispersion 0.12 1.3% 1.0% -1.0%
total real output, Y 2.16 -1.6% -0.1% 0.3%
total welfare, W 0.29 -0.9% -0.2% 0.4%

Table 9: Comparative statics for full choice calibration (� = 1)

For the random choice calibration, we set � = 0 and then calibrate the remaining

three parameters (A; �; k) to match the �rst three targets of our baseline calibration.

Table 10 reports the calibrated parameters and targets.
27Since � = 1 with full choice, we instead calculate the e¤ect of a 1% decrease in � and then

reverse the sign in Table 9.
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Parameter Target

DM utility curvature, 1� � 0.641 elasticity of money demand, �L -0.16
CM utility parameter, A 2.06 average money demand, L(i) 0.272
cost of entry, k 0.0363 buyers�surplus share, �(n) 0.50

Table 10: Random choice calibration (� = 0)

Table 11 summarizes the equilibrium outcomes and the comparative statics ef-

fects of a 1% increase in the parameters k;  � 1 + � , and � for the random choice

calibration.

Baseline 1 + � (" in�ation) k (" cost) � (" choice)
seller-buyer ratio, n 1.26 -1.4% -0.9% 1.0%
meeting prob, �(n) 0.72 -0.7% -0.5% 0.5%
average quality, ~a(n) 0.50 0.0% 0.0% 0.2%
average quantity, ~q(n) 0.14 -6.1% -0.4% 0.6%
average payment, ~d(n) 0.20 -4.4% -0.1% 0.5%
money holdings, z= 0.60 -7.3% 0.4% 0.4%
average surplus, ~s(n) 0.13 -1.7% -0.2% 0.5%
buyer share, �(n) 0.50 -1.1% -0.7% -0.1%
price or markup, ~p(n) 1.46 1.8% 0.3% 0.0%
price dispersion 0.37 1.5% 0.5% 0.0%
total real output, Y 2.21 -0.3% 0.0% 0.1%
total welfare, W 0.48 -0.3% -0.1% 0.1%

Table 11: Comparative statics for random choice calibration (� = 0)

With random choice, the direction of the e¤ects is generally the same as with

full choice, but the magnitude is often signi�cantly lower. The only di¤erences in

direction are (i) average quality, which does not vary in the absence of choice; and

(ii) money holdings, which are locally decreasing in entry cost with full choice,

but increasing with random choice. At our baseline calibration with partial choice

(� = 0:54), money holdings are locally increasing in entry cost, but non-monotonic

(and decreasing over most of the parameter range) as Figure 8 shows.
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Online Appendix A: Proofs

Proofs for Section 4

Proof of Lemma 1

Part 1. Since we assume the planner faces the same information as the buyer,

with probability � 2 (0; 1] the planner can observe the utility shocks a prior to

choosing a seller. We verify in the proof of Proposition 1 that in this case the

planner always chooses the seller with the highest utility shock among those the

buyer meets. With probability 1� �, the planner cannot observe the utility shocks

prior to choosing a seller and they simply choose a seller at random.

Using the fact that the distribution of the maximum of N � 1 draws is (G(a))N ,
and weighting by the probability PN(n) that exactly N sellers meet a buyer, condi-

tional on N � 1; we obtain

(36) ~G(a;n) =

�
1X
N=1

PN(n)(G(a))
N

�(n)
+ (1� �)G(a):

Given that we assume a Poisson distribution, substituting PN(n) = nNe�n

N !
and

�(n) = 1� e�n into the above yields

(37) ~G(a;n) =

�

�
e�n

1P
N=0

(nG(a))N

N !
� e�n

�
1� e�n

+ (1� �)G(a)

which, using the fact that
1P
N=0

(nG(a))N

n!
= e�n(G(a)), simpli�es to (5).

Part 2. Taking the limit as n! 0, we have

(38) lim
n!0

~G(a;n) = � lim
n!0

�
e�n(1�G(a)) � e�n

1� e�n

�
+ (1� �)G(a) = G(a)

using L�Hopital�s rule. Therefore, ~a(n)! EG(a).
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Part 3. Taking the limit as n!1, we have

(39) lim
n!1

~G(a;n) = � lim
n!1

�
e�n(1�G(a)) � e�n

1� e�n

�
+ (1� �)G(a) = (1� �)G(a)

for any a 2 [a0; �a) and limn!1 ~G(�a;n) = 1. Therefore, ~a(n)! ��a+ (1� �)EG(a).

Part 4. For n > 0, we have ~G(a;n) < G(a) for a 2 A. To see this, let wN(n) =
PN(n)=�(n). Using (36), ~G(a;n) =

1P
N=1

wN(n)[�(G(a))
N + (1 � �)G(a)]. Since

~G(a;n) is a weighted average of the term �(G(a))N + (1 � �)G(a) for all N > 1;

and (G(a))N < G(a) for all N > 1 and a 2 (a0; �a), and G(a)N = G(a) for a = a0

or a = �a, we have ~G(a;n) < G(a) for all � 2 (0; 1]. Therefore, ~G(a;n) �rst order
stochastically dominates G(a) and ~a(n) > EG(a).

Part 5. Consider any f : A! R+ such that f 0 > 0. For any n1 and n2 such that
n1 > n2, Part 6 implies ~f(n1) > ~f(n2), i.e.

R �a
a0
f(a)d ~G(a;n1) >

R �a
a0
f(a)d ~G(a;n2):

Thus ~G(a;n1) � ~G(a;n2) and ~G(a;n1) �rst order stochastically dominates ~G(a;n2):

Part 6. Applying Leibniz�integral rule gives us

(40) ~f 0(n) =

Z �a

a0

f(a)
@~g(a;n)

@n
da:

First, we show that there exists a unique cuto¤ â 2 A such that @~g(a;n)
@n

> 0 for a >

â and @~g(a;n)
@n

< 0 for a < â: To start with, we have

(41) ~g(a;n) = �

�
ng(a)e�n(1�G(a))

1� e�n

�
+ (1� �)g(a):

Di¤erentiating (41) with respect to n, we obtain

(42)
@~g(a;n)

@n
= �g(a)

�
e�n(1�G(a))[(1� n(1�G(a)))(1� e�n)� ne�n]

(1� e�n)2

�
and therefore @~g(a;n)

@n
> 0 if and only if

(43) (1� n(1�G(a)))(1� e�n)� ne�n > 0;
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or, equivalently,

(44) G(a) >
1

1� e�n
� 1

n
:

De�ning â = G�1
�

1
1�e�n �

1
n

�
, we have @~g(a;n)

@n
> 0 if and only if a > â:

We can use the cuto¤ â to rewrite ~f 0(n) as follows:

(45) ~f 0(n) �
Z â

a0

f(a)
@~g(a;n)

@n
da+

Z �a

â

f(a)
@~g(a;n)

@n
da:

We therefore have ~f 0(n) > 0 if and only if

(46)
Z �a

â

f(a)
@~g(a;n)

@n
da > �

Z â

a0

f(a)
@~g(a;n)

@n
da > 0:

Given that f 0(a) > 0, and both sides of (46) are positive, by de�nition of â, a

su¢ cient condition for ~f 0(n) > 0 is

(47)
Z �a

â

f(â)
@~g(a;n)

@n
da � �

Z â

a0

f(â)
@~g(a;n)

@n
da;

which is true i¤
R �a
â
@~g(a;n)
@n

da � �
R â
a0

@~g(a;n)
@n

da; or equivalently
R �a
a0

@~g(a;n)
@n

da � 0.

Applying Leibniz� integral rule again,
R �a
a0

@~g(a;n)
@n

da = @
@n

R �a
a0
~g(a;n)da = 0, sinceR �a

a0
~g(a;n)da = 1. Therefore, ~f 0(n) > 0. �

Proof of Proposition 1

The �rst-order condition with respect to qa is

(48) �(n)[au0(qa)� c0(qa)]~g(a;n) = 0

and the �rst order-condition with respect to n is

(49) �0(n)~s(n; fqaga2A) + �(n)~s0(n; fqaga2A) = k:
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We can verify that s�a = au(q�a)� c(q�a) is strictly increasing in a. Di¤erentiating s�a,

(50)
ds�a
da

= u(q�a) + [au
0(q�a)� c0(q�a)]

dq�

da
:

Since au0(q�a)�c0(q�a) = 0 by (48) if n� > 0, we have
ds�a
da
= u(q�a) > 0 for all a 2 (a0; �a].

Given that s�a is strictly increasing in a and s
�
0 � 0 where s�0 � a0u(q0) � c(q0), we

have s�a � 0 for all a 2 A. Therefore, all chosen goods a 2 A are traded if a0 > 0; and
qa satis�es au0(qa) = c0(qa). If a0 = 0, we have qa = 0 since limq!0 c

0(q)=u0(q) = 0.

Since s�a is strictly increasing in a, the planner chooses the seller with the highest

utility shock a whenever possible, i.e. with probability �, and randomizes across

sellers otherwise, i.e. with probability 1 � �. The distribution of chosen goods,
~G(a;n); is therefore equal to (5).

Existence and uniqueness of the solution to the planner�s problem follows from

Proposition 2, which is proven below. For the planner�s problem, we know that

s�a � 0 for all a 2 A and thus all chosen goods are traded. Setting i = 0 in

Proposition 2 results in equilibrium conditions that are equivalent to the planner�s

FOCs. It follows that there exists a unique solution to the planner�s problem with

n� > 0 provided that Assumption 4 holds, except that q0a = q�a since q
�
a does not

depend directly on n: That is, Assumption 2 su¢ ces. �

Proofs for Section 5 (except Proposition 2)

Proof of Lemma 2

De�ne va � au(qa) � da=, the buyer�s ex post trading surplus, and _va � v0(a):

First, it follows from the facts that va � 0 for all a and _va = u(qa) � 0 that there
exists a unique ab 2 A such that qa = 0 and da = 0 if and only if a � ab.

Next, let f(a) = z

� au(qa) + va: Constraint (59) binds if and only if f(a) = 0.

Di¤erentiating, we have f 0(a) = �(u(qa) + au0(qa)q0(a)) + _va. Using _va = u(qa), this

implies that f 0(a) = �au0(qa)q0(a): Since u0(qa) > 0 and q0(a) � 0 is a constraint,

we have f 0(a) � 0. Therefore, there exists a unique ac 2 A such that f(a) = 0 and
constraint (59) binds if and only if a 2 [ac; �a]; so da = z and thus z


= au(qa)� va:

Di¤erentiating, we have au0(qa)q0(a) = 0 for all a 2 [ac; �a]. Since u0(qa) > 0 and

q0(a) � 0 is a constraint, this requires q0(a) = 0 and thus qa = qac on [ac; �a]:
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Finally, it is clear that a0 � ab and ac � �a. It remains only to show that ab � ac.

We have qab = 0 while qac > 0, so qab � qac and thus ab � ac because q0(a) � 0. �

Proof of Lemma 3

In the limit as n! 0, we have ~G(a;n)! G(a) by Lemma 1. As n! 0, we have

i=�(n) ! 1 so � ! 1. Also, 1=� ! 0 implies that �(a;n) ! 1�G(a)
g(a)

on (ab; ac]:

From Lemma 7, we have [1 � �(ab;n)
ab

]ab = 0, which is equivalent to  G(ab) = 0

where  G(a) � a � 1�G(a)
g(a)

. By Assumption 3, we have  0G(a) > 0. Also, we have

 G(a0) =  G(0) � 0 and  G(�a) = �a > 0. Therefore, there exists a unique solution
ab 2 [a0; �a) to  G(a) = 0. Finally, as n! 0, the condition for ac reduces to

(51) (�a� ac)[1�G(ac)] = �a

�
� G(ab)

ab �  G(ab)

�
(1�G(ab)):

Given that  G(ab) = 0; if ab > 0 then the right-hand side is zero, which implies

ac = �a. In the limit as ab ! 0, the right-hand side is also zero, so ac = �a. �

Proof of Proposition 2

Our strategy is to solve for the equilibrium in two stages. First, we take z and n

as given and solve for f(qa; da)ga2A (inner maximization problem). Second, we solve
for z and n (outer maximization problem) given the solutions for f(qa; da)ga2A.
We �rst solve the inner and outer maximization problems. Next, we use the re-

sults to prove Parts 1 to 8 of Proposition 2. Finally, we prove existence and unique-

ness of equilibrium. Proofs for all lemmas used in this section to prove Proposition

2 are found at the end of this section (unless included earlier).

Stage 1. Inner maximization problem

In the �rst stage, taking z > 0 and n > 0 as given (we later prove this), the

market makers� problem is to maximize (17) subject to (18) at equality, plus a

liquidity constraint da � z for all a 2 A; the IC constraint (20), and the IR constraint
(19). Ignoring constants, the market maker�s inner maximization problem is:

(52) max
f(qa;da)ga2A

�
�(n)

Z �a

a0

�
au(qa)�

da


�
d ~G(a;n)� i

z



�
;
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subject to

(53)
�(n)

n

Z �a

a0

�
�c(qa) +

da


�
d ~G(a;n) = k;

and, for all a; a0 2 A;

da � z;(54)

au(qa)�
da


� au(qa0)�
da0


;(55)

au(qa)�
da


� 0;(56)

da; qa � 0:(57)

To solve the inner maximization problem (52), we transform the above problem

as follows. De�ning va � au(qa) � da=, the buyer�s ex post trading surplus, and

_va � v0(a), the following lemma simpli�es the (IC) constraint. This is a standard

result and the proof is omitted.

Lemma 4. The incentive compatibility (IC) constraint holds if and only if (i) q0(a) �
0, and (ii) _va = u(qa):

We can now use va � au(qa) � da= and Lemma 4 to re-write the problem as

an optimal control problem where qa is the control variable, va is the state variable,

and � is the Lagrange multiplier associated with the seller entry constraint (53). For

simplicity, we assume that a0 = 0.

In the �rst stage, we take z, n; � as given and later solve for these. Given that

a0 = 0, we have v0 = 0: Using va � au(qa)� da= to eliminate da in the above, and
substituting in the constraint (53), the inner maximization problem becomes

(58) max
f(qa;va)ga2A

�
�(n)

Z �a

a0

f(1� �)va + � [au(qa)� c(qa)]g ~g(a;n)da� �nk � i
z



�
;
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subject to v0 = 0 and, for all a 2 A;

au(qa)� va � z


;(59)

_va = u(qa);(60)

q0(a) � 0;(61)

qa; va � 0.(62)

The inner maximization problem is a standard optimal control problem with qa
as the control variable and va as the state variable. We can therefore apply the

Maximum Principle to �nd the necessary conditions for the optimal path of the

control and state variables. To solve the inner maximization problem, we ignore

the condition q0(a) � 0 and later verify that it holds in Lemma 8. Ignoring the

constants, the current value Hamiltonian for the optimal control problem is:

(63) H = �(n)f(1� �)va + � [au(qa)� c(qa)]g~g(a;n) + �au(qa)

where �a is the costate variable, and the Lagrangian is:

(64)

L = �(n)f(1��)va+� [au(qa)� c(qa)]g~g(a;n)+�au(qa)+�a
�
z


� au(qa) + va

�
+�aqa+�ava

where �a, �a and �a are the Lagrangian multipliers associated with the liquidity

constraint, non-negativity constraint, and IR constraint respectively.

The FOCs and the transversality condition are as follows:

(65)
@L

@qa
= �(n)� [au0(qa)� c0(qa)] ~g(a;n) + (�a � �aa)u

0(qa) + �a = 0;

(66)
@L

@va
= (1� �)�(n)~g(a;n) + �a + �a = � _�a;

(67)
@L

@�a
= _va = u(qa);
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(68) ��av�a = 0:

For the inequality constraints, the conditions are:

�a � 0; �a(
z


� au(qa) + va) = 0;(69)

�a � 0; �aqa = 0;(70)

�a � 0; �ava = 0.(71)

The following lemma provides expressions for �a and �ac, where �a �
R �a
a
�xdx.

Lemma 5. For all a 2 [a0; ac], we have the following:

(72) �a = �(n)(1� �)[1� ~G(a;n)] + �ac +

Z �a

a

�xdx

and

(73) �ac =
�(n)

�a

Z �a

ac

[�(x� ac)~g(x;n) + (1� �)( ~G(ac;n)� ~G(x;n)]dx:

The next lemma uses our assumption that a0 = 0.

Lemma 6. If a0 = 0, we obtain the following:

(74) � = 1 +
�ac +

R �a
a0
�xdx

�(n)
:

To determine qa for all a 2 A, it remains only to determine �; ab, and ac.

By Lemma 2, there are three intervals to consider.

Case 1. For any a 2 [a0; ab]; va = 0 for all a and therefore qa = 0:
Case 2. For any a 2 [ab; ac], we have �a = 0 and �a = 0, so qa solves

(75) �(n)� [au0(qa)� c0(qa)] ~g(a;n) = ��au0(qa):

Using the above two lemmas, plus the fact that
R �a
a
�xdx =

R ab
a
�xdx for all a since
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�a = 0 for a > ab, and therefore
R �a
a
�xdx =

R ab
a
�xdx = 0 for a � ab, we can write

(76) (a� �(a;n))u0(qa) = c0(qa)

where

(77) �(a;n) = �
�
1� �

�

� 
1� ~G(a;n)

~g(a;n)

!
� �ac
�(n)�~g(a;n)

:

Case 3. For any a 2 [ac; �a], we have �a = 0 and qa = qac by Lemma 2.

The following lemma will prove useful in deriving Proposition 2.

Lemma 7. We have either a = �(a;n) or a = 0 for all a � ab.

Proof. For a = ab, we have qab = 0. Using (76) above, we have

(78) lim
a!ab

(a� �(a;n)) = lim
a!ab

�
1� �(a;n)

a

�
a = lim

q!0

c0(q)

u0(q)
= 0

since we have limq!0
c0(q)
u0(q) = 0 by assumption. Therefore, by continuity of the

function qa, we have either
�(ab)
ab

= 1; or equivalently ab = �(ab), or ab = 0. Similarly,

we have a = �(a;n) or a = 0 for all a < ab. �

Stage 2. Outer maximization problem

The outer maximization problem we solve next is

(79) max
z;n;�

�
J(n; z; �)� �nk � i

z



�
;

where we de�ne

(80) J(n; z; �) � max
f(qa;va)ga2A

�
�(n)

Z �a

a0

f(1� �)va + � [au(qa)� c(qa)]g ~g(a;n)da
�
;

subject to v0 = 0 and, for all a 2 A; constraints (59), (60), (61), and (62).
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To solve the outer maximization problem, the function J(n; z; �) is equivalent to

(81)

J(n; z; �) = max
f(qa;va)ga2A

( R �a
a0
�(n)f(1� �)va + � [au(qa)� c(qa)]g~g(a;n)da

+
R �a
a0

h
�a

�
z

� au(qa) + va

�
+ �ava + �au(qa) + �aqa

i
da

)
:

De�ne ~s(n) �
R �a
a0
sad ~G(a;n) and ~v(n) �

R �a
a0
vad ~G(a;n). Returning to our original

formulation to eliminate �, the above problem is equivalent to

(82) max
z;n

�
Ĵ(n; z)� i

z



�
;

where

(83)

Ĵ(n; z) = max
f(qa;va)ga2A

�
�(n)~v(n) +

Z �a

a0

�
�a

�
z


� au(qa) + va

�
+ �ava + �au(qa) + �aqa

�
da

�
subject to the constraint

(84)
�(n)

n
[~s(n)� ~v(n)] � k

and n � 0 with complementary slackness.
Using the envelope theorem, the �rst-order conditions for z and n respectively

are

(85)
Z �a

a0

�ada = i

and

(86) �0(n)~v(n) + �(n)~v0(n) = 0:

Using the fact that �a = 0 for all a < ac, by de�nition of ac, we have
R �a
a0
�ada =

�ac : The FOC for z given by (85) thus becomes:

(87) �ac = i;
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Substituting �ac = i into expression (74) in Lemma 6, the above yields

(88) � = 1 +
i+
R �a
a0
�xdx

�(n)
:

Finally, we verify that the condition q0(a) � 0 is indeed satis�ed provided that
G00(a) � 0. This is a su¢ cient but not a necessary condition for q0(a) � 0.

Lemma 8. If G00(a) � 0 for all a 2 A; then q(:) is weakly increasing for all a 2 A
and q0(a) > 0 for all a 2 (ab; ac):

Proof of Parts 1 to 8

Part 1. Follows from the de�nition of ab:

Part 2. From above, for any a 2 [ab; ac], we have

(89) (a� �(a;n))u0(qa) = c0(qa)

where, using �ac = i plus expression (77) for �(a;n), we have

(90) �(a;n) = �
�
1� �

�

� 
1� ~G(a;n)

~g(a;n)

!
� i

�(n)�~g(a;n)
:

The expression for � can be derived as follows. Using [1 � �(ab;n)
ab

]ab = 0 from

Lemma 7 plus expression (90) for �(a;n), we have

(91)

"
1 +

�
1� �

�

� 
1� ~G(ab;n)

ab~g(a;n)

!
+

i

�(n)�ab~g(ab;n)

#
ab = 0

If ab = 0 then � = 1 + i
�(n)

from (74). If ab > 0, the above implies that

(92) i = ��(n)[�ab~g(ab;n) + (1� �)(1� ~G(ab;n))]:

For any ab � 0, the value of � is given by the following expression:

(93) � =
1� ~G(ab;n) +

i
�(n)

1� ~G(ab;n)� ab~g(ab;n)
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which is equivalent to (26) using expression (21).

Also, _va = u(qa) implies va � v0 =
R a
a0
u(qx)dx, so va =

R a
a0
u(qx)dx since v0 = 0.

We can derive da= from va using the fact that va � au(qa)� da=.

Part 3. Clear from Lemma 2.

Part 4. Using �ac = i and expression (73), the value of ac is given by (27).

Part 5. Clear from the de�nition of ac.

Part 6. The �rst-order condition for n > 0 given by (86) can be written as

(94) �0(n)~s(n) + �(n)~s0(n) = k;

using the ZPC constraint (84) at equality. More precisely, this is equivalent to

(95) �0(n)~s(n; fqaga2A) + �(n)~s0(n; fqaga2A) = k:

The fact that n is strictly decreasing in k is proven in Lemma 11 below.

Part 7. The zero pro�t condition is given by (84), using the de�nition of va.

Part 8. Since va is increasing in a, the highest draw is always chosen by buyers

whenever possible, i.e. with probability �, and buyers randomize otherwise, i.e.

with probability 1� �. Therefore the cdf of chosen goods is given by (5). �

Proof of existence and uniqueness

We �rst prove existence and uniqueness of the solution to the inner maximization

problem and then prove the same for the outer maximization problem.

Inner maximization. We prove that, given z and n from the outer maximization

problem, the solution to the inner maximization problem exists and is unique.

Existence. A solution to the problem exists because the set of admissible paths is

non-empty and compact, and there exists an admissible path for which the objective

is �nite. For example, the path qa = 0 and va = (a � 1)u(qa) for all a 2 A is

admissible (since v0 = 0, au(qa) � va � z=; qa � 0, va � 0, and _va = u(qa) +

(a � 1)u0(qa)q0(a) = u(qa); and q0(a) � 0). Also, the objective is �nite under this

path. Finally, the set of feasible paths is compact since qa 2 [0; q��a] where q��a solves
�au0(q�a) = c0(q�a) and va 2 [0; v�a] where v�a = u(q��a)[�a� a0] since va =

R a
a0
u(qx)dx:

Uniqueness. The Hamiltonian H(qa; va; �a); where �a is the co-state variable
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given by the Maximum Principle, is strictly concave in the control and state vari-

ables (qa; va) for all a: Therefore, the solution is an optimum that solves the inner

maximization problem and it is unique. To establish strict concavity, di¤erentiating

H(qa; va; �a) with respect to qa yields

@H

@qa
= �(n)�[u0(qa)� c0(qa)]~g(a;n) + �au

0(qa);

@2H

@q2a
= �(n)�[u00(qa)� c00(qa)]~g(a;n) + �au

00(qa) � �X;

where X > 0, since u00(qa) < 0 and c00(qa) > 0. Di¤erentiating H(qa; va; �a) with

respect to va, we obtain @H
@va

= �(n)(1� �)~g(a;n) and @2H
@v2a

= 0: Finally, @2H
@va@qa

= 0,

so we get the Hessian matrix, H =

"
�X 0

0 0

#
: Since xTHx < 0 for all x 2 R2nf0g,

the Hessian H is negative de�nite and the Hamiltonian is strictly concave in (qa; va).

Outer maximization. We prove that, given f(qa; va)ga2A from the inner maxi-

mization problem, the solution (n; z) to the outer maximization problem exists and

is unique, and n; z are interior solutions with n; z > 0 if Assumption 4 holds. To

establish this result, we �rst prove that there exists a non-empty set of solutions n,

denoted by N(k); that solves the problem. We then show that equilibrium is unique

if n > 0 for all n 2 N(k), and �nally we prove that n > 0 for any n 2 N(k).
Taking f(qa; va)ga2A as given by the inner maximization problem, and ignoring

constants, the outer maximization problem is equivalent to

(96) max
z;n

�
�(n)

Z �a

a0

�
au(qa)�

da


�
d ~G(a;n) + (�ac � i)

z



�
;

subject to

(97)
�(n)

n

Z �a

a0

�
�c(qa) +

da


�
d ~G(a;n) � k

and n � 0 with complementary slackness, where f(qa; va)ga2A solves the inner max-
imization problem.

Lemma 9. The set of solutions N(k) is nonempty and upper hemicontinuous.
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Proof. Since �(n) is a bijection, we can rewrite (96) in terms of � as follows:

(98) max
z;�

�
�

Z �a

a0

�
au(qa)�

da


�
d ~G(a;�) + (�ac � i)

z



�
:

The objective function is continuous and, without loss of generality, we can restrict

(z; �) to the following compact set:

(99) � = f(z; �) : � 2 [0; 1]; z= 2 [0; �au(q�a)]g

since q 2 [0; q��a] where q��a solves �au0(q�a) = c0(q�a); and we have z= < �au(q�a): The

constraint (97) can therefore be written as (z; �) 2 �(k) for all k � 0, where �(k)
is a continuous and compact-valued correspondence. Applying the Theorem of the

Maximum (Theorem 3.6 in Stokey, Lucas, and Prescott, 1989), the correspondence

that gives the set of solutions for � is nonempty and upper hemicontinuous, and

therefore also N(k) is nonempty and upper hemicontinuous. �

The following lemma establishes that any strictly positive solution n 2 N(k)

must be unique. Since we know that z = dac > 0 where da= = au(qa) � va; and

f(qa; va)ga2A is given by the inner maximization problem, Lemma 10 implies that
any solution (n; z) where n > 0 is unique.

Lemma 10. If N+ � N(k) and N+ � R+nf0g, then N+ = fng.

Proof. Consider any solution n 2 N(k) such that n > 0. De�ning �(n) �
�(n)~v(n), the solutions n satisfy the �rst-order condition (86), which says �0(n) = 0.

We show that �00(n) < 0 and thus any solution is unique. Using (41), for any

� 2 (0; 1] we have

(100) �(n) = �

Z �a

a0

ne�n(1�G(a))vag(a)da+ (1� �)(1� e�n)

Z �a

a0

vag(a)da:

Using Leibniz�s integral rule, plus the envelope theorem,

�0(n) = �

�Z �a

a0

e�n(1�G(a))vag(a)da�
Z �a

a0

n(1�G(a))e�n(1�G(a))vag(a)da

�
+(1� �)e�n

Z �a

a0

vag(a)da:(101)
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By integration by parts on the second integral in �0(n) above, we obtain

(102)

�0(n) = �

�Z �a

a0

e�n(1�G(a))(1�G(a))v0(a)da+ e�nv(a0)

�
+(1��)e�n

Z �a

a0

vag(a)da > 0:

Di¤erentiating (102), we �nd that

(103)

�00(n) = �
�
�

Z �a

a0

e�n(1�G(a))(1�G(a))2v0(a)da+ �e�nv(a0) + (1� �)e�n
Z �a

a0

vag(a)da

�
< 0:

The fact that �00(n) < 0 follows from the fact that v0(a) = u(qa) � 0 for all a and
v0(a) > 0 for some a and also v(a0) = 0. Therefore, any solution n > 0 is unique. �

From Lemma 9, we know that, for any given k � 0; there exists a non-empty

set of solutions N(k) that solves problem (96). We also know that any solution z is

interior, since z= = �au(q�a) implies v�a = �au(q�a)� �z= = 0 and therefore va = 0 for
all a 2 A:We now prove that, for any n 2 N(k), we have n 2 R+nf0g provided that
Assumption 4 holds. Also, the function n(k) is strictly decreasing in k:

Lemma 11. Any solution n 2 N(k) is interior, i.e. n 2 R+nf0g. The function
n(k) is strictly decreasing in k.

Proof. First, we show there exists an interior solution n > 0. De�ne �(n) �
�(n)~s(n): The �rst-order condition (94) says �0(n) = k:We prove there exists n > 0

such that �0(n) = k if Assumption 4 holds. We have limn!1 �
0(n) = 0, and

(104) lim
n!0

�0(n) =

Z �a

a0

lim
n!0

s(a; qa(n))dG(a)

where limn!0 s(a; qa(n)) = s(a; limn!0 qa(n)): If the following condition holds:

(105) EG[au(q
0
a)� c(q0a)] > k

where q0a � limn!0 qa(n), there exists n > 0 that satis�es �0(n) = k provided that

�00(n) < 0 (which we prove below).

Next, any interior solution n > 0 is better than n = 0. De�ne the value function:

(106) V (k; ) � max
z;n

�
�(n)

Z �a

a0

�
au(qa)�

da


�
d ~G(a;n) + (�ac � i)

z



�
:
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Since we know that z is interior, we have V (k; ) �maxn f�(n)~v(n)g since
R �a
a0
�a = i.

If n = 0 then V (k; ) = 0. If n > 0, V (k; ) � maxn f�(n)~s(n)� nkg using
constraint (97) with equality. Letting �(n) = �(n)~s(n), we have V (k; ) > 0 if

�(n)�nk > 0: Thus the candidate solution n > 0 is better than n = 0 if �(n) > nk

for n > 0. Using the fact that �0(n) = k ; it su¢ ces to show that �00(n) < 0 and
�0(n)n
�(n)

< 1 for n > 0. Similarly to Lemma 10, using (41), for any � 2 (0; 1] we have

(107) �(n) = �

Z �a

a0

ne�n(1�G(a))s(a)g(a)da+ (1� �)(1� e�n)

Z �a

a0

s(a)g(a)da

and using Leibniz�s integral rule, plus the envelope theorem, yields

�0(n) = �

�Z �a

a0

e�n(1�G(a))sag(a)da�
Z �a

a0

n(1�G(a))e�n(1�G(a))sag(a)da

�
+(1� �)e�n

Z �a

a0

sag(a)da:(108)

Therefore, we have

�0(n)n

�(n)
=

�
R �a
a0
ne�n(1�G(a))sag(a)da+ (1� �)ne�n

R �a
a0
sag(a)da

�
R �a
a0
ne�n(1�G(a))sag(a)da+ (1� �)(1� e�n)

R �a
a0
sag(a)da

�
�
R �a
a0
n2(1�G(a))e�n(1�G(a))sag(a)da

�
R �a
a0
ne�n(1�G(a))sag(a)da+ (1� �)(1� e�n)

R �a
a0
sag(a)da:

(109)

So, �
0(n)n
�(n)

< 1 for n > 0 provided that ne�n � 1 � e�n, which is true (note this is

equivalent to ��(n) � 1).
Finally, �(n) = �(n) � nk for n > 0; so �0(n) = �0(n) � k and �00(n) = �00(n).

Since �00(n) < 0 from the proof of Lemma 10, we have �00(n) < 0. It follows that,

for any n 2 N(k), we have n > 0. Since we assume k > 0, this implies n 2 R+nf0g.
Since n is unique by Lemma 10, there is a function n : R+nf0g ! R+nf0g such

that n(k) solves �0(n) = k: Clearly, n is strictly decreasing in k since �00(n) < 0. �

Proof of Lemma 5

Start with the fact that

(110) (1� �)�(n)~g(a;n) + �a + �a = � _�a
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from the FOC (66) above. Integrating both sides over [a; �a], we obtain

(111) �
Z �a

a

_�xdx =

Z �a

a

(1� �)�(n)~g(x;n)dx+

Z �a

a

�xdx+

Z �a

a

�xdx

and therefore

(112) �(��a � �a) = �(n)(1� �)

Z �a

a

~g(x;n)dx+

Z �a

a

�xdx+

Z �a

a

�xdx:

The transversality condition ��av�a = 0 implies ��a = 0 since v�a > 0. Substituting

�a �
R �a
a
�xdx into the above, and setting ��a = 0 yields

(113) �a = �(n)(1� �)

Z �a

a

~g(x;n)dx+ �a +

Z �a

a

�xdx:

Now, �a = 0 for all a 2 [a0; ac]; thus �a =
R �a
a
�xdx =

R �a
ac
�xdx = �ac for all a 2

[a0; ac]: Substituting into (113), and using the fact that
R �a
a
~g(x;n)dx = [ ~G(x;n)]�aa =

1� ~G(a;n), we obtain (72).

For the second part, using (65) and Lemma 2, for all a 2 [ac; �a] we have

(114) �(n)� [au0(�q)� c0(�q)] ~g(a;n) + (�a � �aa)u
0(�q) = 0

where �q � qac , and, for all a 2 [ac; �a]; we also have

(115) �(n)� [acu
0(�q)� c0(�q)] ~g(a;n) + �acu

0(�q) = 0:

Using the above two equations, and dividing both sides by u0(�q), we obtain

(116) �(n)�(a� ac)~g(a;n) = ��a + �aa+ �ac :

Substituting (113) for both �a and �ac into the above, and simplifying, yields

(117) �(n)[�(a� ac)~g(a;n) + (1� �)( ~G(ac;n)� ~G(a;n)] = ��a + �aa+ �ac :

Finally, �a =
R �a
a
�xdx implies that _�a = ��a and thus we obtain

(118) �(n)[�(a� ac)~g(a;n) + (1� �)( ~G(ac;n)� ~G(a;n)] = ��a � _�aa+ �ac :
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Integrating both sides over [ac; �a], we have

(119)

�(n)

Z �a

ac

[�(x�ac)~g(x;n)+(1��)( ~G(ac;n)� ~G(x;n)]dx =
Z �a

ac

�
��x � _�xx+ �ac

�
dx

where
R �a
ac

�
��x � _�xx+ �ac

�
dx = �

�R �a
ac
�x + _�xx dx

�
+ [�acx]

�a
ac
: Using integra-

tion by parts,
R �a
ac
�x + _�xx dx = [�xx]

�a
ac
= ��a�a � �acac = ��acac; and [�acx]

�a
ac
=

�ac�a��acac. Substituting
R �a
ac

�
��x � _�xx+ �ac

�
dx = �ac�a into the above yields

(120) �(n)

Z �a

ac

[�(x� ac)~g(x;n) + (1� �)( ~G(ac;n)� ~G(x;n)]dx = �ac�a

and we therefore obtain (73). �

Proof of Lemma 6

To start with, we have

(121) �(n)� [au0(qa)� c0(qa)] ~g(a;n) + (�a � �aa)u
0(qa) + �a = 0

from the FOC (65) for qa. Dividing both sides by qa, we obtain

(122) �(n)�

�
a� c0(qa)

u0(qa)

�
~g(a;n) + (�a � �aa) =

��a
u0(qa)

:

Taking the limit as qa ! 0, and using limq!0 u
0(q) = +1 and limq!0

c0(q)
u0(q) = 0 yields

(123)

lim
q!0

�(n)�

�
a� c0(q)

u0(q)

�
~g(a;n)+ (�a � �aa)+

�a
u0(q)

= �(n)�a~g(a;n)+ (�a � �aa) = 0

for any a � ab and therefore

(124) �a = ��(n)�a~g(a;n)� �aa

for any a � ab. In particular, we have

(125) �a0 = ��(n)�a0~g(a0;n)� �a0a0:
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If a0 = 0, then the above implies that �a0 = 0. Next, applying Lemma 5 to the

special case a = a0, we have

(126) �a0 = �(n)(1� �) + �ac +

Z �a

a0

�xdx:

Therefore, if a0 = 0, we have �a0 = �(n)(1� �) + �ac +
R �a
a0
�xdx = 0: �

Proof of Lemma 8

For all a � ab, we have qa = 0 and q0(a) = 0. For all a greater than or equal to

ac, qa is constant and thus q0(a) = 0. For a 2 (ab; ac), implicit di¤erentiation of

(127) (a� �(a;n))u0(qa) = c0(qa)

yields

(128) q0(a) =
�[1� �0(a)]u0(qa)

[a� �(a;n)]u00(qa)� c00(qa)

where �(a;n) can be simpli�ed to:

(129) �(a;n) = �
 
(1� �)(1� ~G(a;n)) + i

�(n)

�~g(a;n)

!
:

Di¤erentiating the above yields

(130) �0(a) =
1� �

�
+

h
(1� �)(1� ~G(a;n)) + i

�(n)

i
~g0(a;n)

�~g(a;n)2
:

Since u0(qa) > 0 and u00(qa) < 0 and c00(qa) > 0 and a��(a;n) > 0, we have q0(a) � 0
provided that �0(a) < 1. Rearranging, this is true provided that

(131)

 
(1� �)(1� ~G(a;n)) + i

�(n)

~G(a;n)

! 
~g0(a;n) ~G(a;n)

~g(a;n)2

!
< 2� � 1:

To prove this, we �rst show that
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(132)
(1� �)(1� ~G(a;n)) + i

�(n)

~G(a;n)
< 2� � 1:

Rearranging the above and simplifying, this is equivalent to

(133) �(1 + ~G(a;n)) > 1 +
i

�(n)
:

For any a 2 (ab; ac), this is true if � � 1 + i
�(n)

, which is true since

(134) � =
1� ~G(ab;n) +

i
�(n)

1� ~G(ab;n)� ab~g(ab;n)
� 1 + i

�(n)(1� ~G(ab;n))
:

Next, we prove that G00(a) � 0 is a su¢ cient (but not necessary) condition for

(135)
~G(a;n)~g0(a;n)

~g(a;n)2
� 1:

Combining (41) with (5), and di¤erentiating (41), yields

(136)
~G(a;n)~g0(a;n)

~g(a;n)2
� 1� e�nG(a)

ng(a)

�
g0(a) + ng(a)2

g(a)

�
Rearranging the above, we have

(137)
~G(a;n)~g0(a;n)

~g(a;n)2
�
�
1� e�nG(a)

�� G00(a)
ng(a)2

+ 1

�
:

Since 1 � e�nG(a) � 1, it su¢ ces to show that G00(a)
ng(a)2

� 0. Therefore, if G00(a) � 0

then q0(a) > 0 for all a 2 (ab; ac). �

Proofs for Section 6

We �rst present a lemma that is used to prove Proposition 3.

Lemma 12. In any equilibrium where i > 0,

1. There exists a unique cuto¤ ap 2 [ab; �a] such that (i) if ap � ac; there is

underconsumption for all a 2 (a0; ap) and overconsumption for all a 2 (ap; ac);
and (ii) if ap > ac, there is underconsumption for all a 2 (a0; ap).
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2. There exists a unique cuto¤ ad 2 [ab; �a] such that (i) if ac � ad; there is

overconsumption for all a 2 [ac; ad) and underconsumption for all a 2 (ad; �a];
and (ii) if ac > ad, there is underconsumption for all a 2 [ac; �a]:

Proof. Part 1. (i) For a 2 (a0; ab], there is underconsumption, i.e. qa < q�a; since

qa = 0 but q�a > 0. For a 2 (ab; ac], we have a � �(a;n) = c0(qa)=u
0(qa) and a =

c0(q�a)=u
0(q�a); where c

0(q)=u0(q) is increasing in q, so qa < q�a (i.e. underconsumption)

for a 2 (ab; ac] if and only if �(a;n) > 0. Rearranging (25) yields

(138) �(a;n) = �
 
(1� �)(1� ~G(a;n)) + i

�(n)

�~g(a;n)

!
;

and therefore �(a;n) > 0 if and only if

(139) �
�
(1� �)(1� ~G(a;n)) +

i

�(n)

�
> 0:

Rearranging, �(a;n) > 0 if and only if

(140) ~G(a;n) < 1 +
i

�(n)(1� �)
:

Since ~G0(a;n) = ~g(a;n) � 0, and ~G(a0;n) = 0 and ~G(�a;n) = 1, while 1+ i
�(n)(1��) 2

[0; 1], there exists a unique cut-o¤ ap 2 (ab; �a] such that �(a;n) > 0 and there is

underconsumption for all a 2 (a0; ap) where ap satis�es

(141) � = 1 +
i

�(n)[1� ~G(ap;n)]

provided that ap � ac. If a 2 (ap; ac) then �(a;n) < 0 and there is overconsump-

tion. (ii) If ap > ac, the range of overconsumption (ap; ac) is empty and we have

underconsumption for all a 2 (a0; ap).
Part 2. (i) For a 2 [ac; �a], qa = qac where ac � �(ac) = c0(qac)=u

0(qac) and

a = c0(q�a)=u
0(q�a). Since c

0(q)=u0(q) is increasing in q, we have qa > q�a (i.e. overcon-

sumption) if and only if a < ac � �(ac). De�ning ad � ac � �(ac), we have overcon-

sumption for a 2 [ac; ad) and underconsumption for a 2 (ad; �a]: (ii) If ad < ac, the

interval [ac; ad) is empty and we have underconsumption for all a 2 [ac; �a]. �

61



Proof of Proposition 3

Part 1. Suppose that ad = maxfac; adg. Follows from combining Parts 1 and

2 of Lemma 12 if ap � ac � ad. Suppose that ac = maxfac; adg. Follows from
combining Parts 1 and 2 of Lemma 12 if ap � ac and ad < ac.

Part 2. If ap > ac, then �(a;n) > 0 for all a 2 (a0; ap) from Part 1 (ii) in Lemma
12. In particular, �(ac) > 0, so we get ac > ad. The rest follows from combining

Parts 1 and 2 in Lemma 12. If ap = ac, the result follows from Part 1.

Part 3. If ab = a0 then � = 1 + i
�(n)

and (141) implies ~G(ap;n) = 0 and thus

ap = ab = a0. Since ap � ac, Part 1 implies there is overconsumption on (a0; au)

and underconsumption on (au; �a] where au = maxfac; adg. Since �(ac) < 0 by (??),
we have overconsumption at ac. Therefore, ac < au and au = ad: �

Proof of Corollary 1

Part 1. Follows from Part 1 of Proposition 2.

Part 2. Setting i = 0 in expression (26) for � in Proposition 2, we obtain

(142) � =
1

1� "�(ab;n)
:

Setting i = 0 in expression (25) for �(a;n) in Proposition 2, and substituting (142)

into (25), we obtain (32).

Part 3. Starting with equation (27) in Proposition 2, setting i = 0 implies ac = �a.

Part 4. Parts 5-8 from Proposition 2 also hold. �

Proof of Proposition 5

In any full-trade equilibrium where ab = a0, letting i! 0 gives same allocation

as planner. If ab = a0, then "�(ab;n) = "�(a0;n) = 0 and Corollary 1 implies that qa
satis�es au0(qa) = c0(qa) for all a 2 A, which is equivalent to the planner�s FOC (6).
Also, we know that �0(n)~s(n) + �(n)~s0(n) = k, which is equivalent to the planner�s

FOC (7). Finally, buyers always choose the highest quality seller in any meeting

and therefore the distribution of chosen goods is equal to the distribution of the

maximum, given by (5), which is the same as the distribution of goods chosen by

the planner. Therefore, i! 0 gives the same allocation as the planner. Conversely,

qa = q�a for all a requires that ab = a0 = 0. �
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Proof of Proposition 6

For any a 2 (a0; ab], the e¢ cient quantity is not traded even when i ! 0 since

q�a > 0 but qa = 0. The e¢ cient quantity is traded at a0 = 0 since q0 = q�0 = 0. To

get the e¢ cient quantity at i ! 0 for any a 2 (ab; �a], Corollary 1 implies that we
require either "�(ab;n) = 0 or a = �a. This is true only if ab = a0 = 0 or a = �a. In

general, if the equilibrium is partial trade (ab > a0), then for any a 2 (a0; �a), we
have qa 6= q�a. Since "�(ab;n) > 0, there is underconsumption for all a 2 (a0; �a). �

Proof of Proposition 7

At the Friedman rule, entry is e¢ cient if the equilibrium is full trade. In any

partial-trade equilibrium, we know from Proposition 6 that q�a > qa for any a 2
(a0; �a) at the Friedman rule. The equilibrium n satis�es

(143) �0(n)~s(n; fqaga2A) + �(n)~s0(n; fqaga2A) = k

and the e¢ cient n� satis�es

(144) �0(n�)~s(n�; fq�aga2A) + �(n�)~s0(n�; fq�aga2A) = k:

We know q�a > qa for any a 2 (a0; �a), but we cannot infer anything about whether
there is under-entry (n < n�), over-entry (n > n�), or e¢ cient entry (n = n�). We

can �nd examples of equilibria for each of these three possibilities. �
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Online Appendix B: Comparative statics

Figure 7: Comparative statics with respect to in�ation rate �

64



Figure 8: Comparative statics with respect to entry cost k
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Figure 9: Comparative statics with respect to degree of choice �
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