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1 Introduction

In retail trade, consumer preferences are not directly observed by firms. As a result,

firms often elicit these preferences through second-degree price discrimination on the

basis of quantity. To do this, firms offer price-quantity schedules that are nonlinear,

i.e. the unit price is decreasing with the quantity purchased. There is recent evidence

that nonlinear pricing is widespread in retail trade, with Bornstein and Peter (2025)

finding that over 90% of retail sales are of multi-sized products featuring quantity

discounts. While this form of price discrimination has been classically studied for the

case of monopolists in Mussa and Rosen (1978) and Maskin and Riley (1984), it is

less clear how competition affects the quantity distortions due to price discrimination

in oligopolistic environments where firms directly compete for customers.

This paper examines how competition affects price discrimination and the extent

of nonlinear pricing. To do so, we develop a search-theoretic model of retail trade. As

is standard in retail trade environments, we assume that sellers post price-quantity

schedules that they commit to ex ante in order to attract buyers. Buyers then choose

sellers through two distinct stages. First, they focus their search on the group of sellers

with the most attractive price-quantity schedules. Next, buyers contact or “meet” a

finite subset of sellers, which we call their choice set. Buyers then choose which seller

to purchase from and how much to buy, where buyers’ choices of both seller and

quantity are driven by their valuations, which are private information.

We model seller competition through competitive search equilibrium in the spirit

of Moen (1997). Specifically, we interpret groups of sellers that post the same price-

quantity schedule and feature the same trading probability as “submarkets”. In the

model, buyers choose which group of sellers to target by choosing the submarket which

offers the most attractive combination of price-quantity schedule and trading proba-

bility. Seller competition is captured through the fact that sellers must offer contracts

that attract buyers to their own submarket in order to increase demand. Within

submarkets, all agents commit to trading at the terms posted in that submarket.

Competition is imperfect in our model because search frictions ensure that buyers

only meet a finite number of sellers within their chosen submarket. To model search

frictions within submarkets, we use the general class of search technologies developed

in Lester, Visschers, and Wolthoff (2015). In our environment, we have one-to-many

meetings because buyers can contact either no sellers, one seller, or more than one
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seller. A “meeting” is simply an opportunity for a buyer to purchase from a seller.

We interpret the finite set of sellers a buyer “meets” as the buyer’s choice set.

After meetings take place, buyers draw a private valuation for each seller in their

choice set. We interpret this as buyers learning their preferences after observing the

goods offered by the sellers they meet, but before purchasing. Buyers then choose

to purchase from the seller that maximizes their net utility. Because all sellers offer

the same price-quantity schedule within a given submarket, buyers’ choice of a spe-

cific seller within their choice set is based purely on idiosyncratic preferences. After

choosing a seller, buyers determine the quantity of the good to purchase. We focus on

incentive-compatible direct revelation mechanisms that induce buyers to reveal their

private information to their chosen seller through their choice of quantity.

We establish conditions under which the existence and uniqueness of equilibrium

is guaranteed. In equilibrium, there is only one active submarket and all sellers offer

the same price-quantity schedule. Importantly, the presence of competitive search

ensures that the direct competition between sellers to attract buyers is built into this

equilibrium price-quantity schedule. Our general expression for equilibrium quantities

can incorporate any degree of competition between monopoly and perfect competition,

and it nests both the standard monopoly benchmark and the competitive limit.

Unsurprisingly, the decentralized equilibrium cannot deliver the first-best alloca-

tion. As is standard, the equilibrium quantities traded are distorted downwards due

to the presence of buyers’ private information, while there is no distortion at the top

(i.e. at the highest buyer type). Moreover, it is possible that some buyers do not

purchase the good, i.e. there may be limited market coverage or participation. We

discuss partial coverage in the Appendix and focus our attention on full coverage.

Importantly, the extent of these informational distortions are endogenous in our

model. In particular, these distortions depend on the seller-buyer ratio, which we

interpret as the degree of competition because it is the expected number of firms in

a buyer’s choice set. We prove that the equilibrium price-quantity schedule features

quantity discounts and we derive sufficient conditions under which the intensity of

nonlinear pricing is decreasing in the degree of competition. We find that greater

competition leads sellers to reduce the quantity distortions from private information

in order to attract more buyers, bringing us closer to the first best. Policy changes

that increase competition by lowering the costs of firm entry can thus affect the extent

of nonlinear pricing and the quantity distortions due to private information.
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The fact that these informational distortions can be influenced by the degree of

competition results from a novel feature of our model: the distribution of buyer types

is itself endogenous and depends on the degree of competition. This arises due to

consumer choice via multilateral meetings. With consumer choice, sellers know that

any buyer with whom they trade must have chosen their good from that buyer’s choice

set, so the distribution of “types” is the endogenous distribution of buyers’ choices

of seller. Greater competition in the sense of more sellers per buyer leads to greater

choice for buyers, so the distribution of types for a higher seller-buyer ratio first-order

stochastically dominates the distribution for a lower seller-buyer ratio. Importantly,

any shift in the distribution of types due to a change in the degree of competition

affects the extent of the quantity distortion due to buyers’ private information.

In the competitive limit where the seller-buyer ratio becomes large, we find that

the quantity distortion is eliminated altogether and we obtain the first best.

2 Related literature

This paper contributes to the large literature on directed and competitive search.1

In particular, we contribute to the literature on competitive search under private infor-

mation, including Faig and Jerez (2005), Menzio (2007), Guerrieri (2008), Guerrieri,

Shimer, and Wright (2010), Moen and Rosen (2011), Albrecht, Gautier, and Vroman

(2014), Davoodalhosseini (2019), Lester, Shourideh, Venkateswaran, and Zetlin-Jones

(2019), Roger and Julien (2023), and Auster, Gottardi, and Wolthoff (2025).

Similarly to Auster et al. (2025), we focus on multilateral meetings and how this

feature interacts with private information and search frictions. As in Auster et al.

(2025), we allow buyers to simultaneously contact multiple trading partners. In our

environment, however, buyers’ private valuations or “types” are realized ex post, i.e.

after contracts are posted and meetings take place (but before trade occurs). As a

result, buyer “types” affect the choices of both seller and quantity within a meeting,

1Important earlier contributions include Montgomery (1991), Peters (1991), Shimer (1996), Moen
(1997), Peters and Severinov (1997), Acemoglu and Shimer (1999), Julien, Kennes, and King (2000),
Burdett, Shi, and Wright (2001), and Shi (2001). See also Rocheteau and Wright (2005), Albrecht,
Gautier, and Vroman (2006), Shi (2009), Menzio and Shi (2010), Menzio and Shi (2011), and Galeni-
anos and Kircher (2012). For a survey, see Wright, Kircher, Julien, and Guerrieri (2021). More recent
contributions include Rabinovich and Wolthoff (2022), which develops a model of partially directed
search based on Lester (2011), and Albrecht, Cai, Gautier, and Vroman (2023a), which considers the
role of market makers and the effect of multiple trading partners in competitive search equilibrium.
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but do not affect buyers’ choice of submarket and there is no market segmentation.

Our environment is also somewhat related to Roger and Julien (2023), which develops

a competitive search model with competing principals and moral hazard in hidden

actions, and Faig and Jerez (2005), which develops a competitive search model with

nonlinear pricing and bilateral meetings (i.e. local monopoly) while we introduce

buyer choice sets via multilateral or one-to-many meetings (i.e. local oligopoly).2

This paper also contributes to the literature on the search-theoretic model of im-

perfect competition developed in Butters (1977), Varian (1980), and Burdett and Judd

(1983). In this class of models, due to search frictions, buyers can only purchase from

a finite subset of sellers who the buyer samples or “contacts”. This corresponds to

the multilateral or one-to-many meetings in our model, which represent buyers’ choice

sets. In both our environment and these models, the extent of competition for a given

buyer is determined by the size of a buyer’s choice set.3 Generally, in these models the

distribution of the size of buyers’ choice sets is either discrete (one or two buyers) or

Poisson. We generalize the assumption of a Poisson distribution by allowing a much

wider class of search technologies that nests the Poisson as a special limiting case.

The class of general search technologies we use to model multilateral meetings

was developed in Lester et al. (2015), further studied in Cai, Gautier, and Wolthoff

(2017), and more recently used in Mangin (2024) and Mangin (2025). Cai, Gautier,

and Wolthoff (2025) microfound this class of search technologies and show that they

can be used to model heterogeneity across agents with respect to meeting probability.

For example, in our environment the search technology could be microfounded in terms

of heterogeneity across buyers with respect to search intensity; see Mangin (2025).

This paper is closely related to Lester et al. (2019), which considers the interaction

between adverse selection and imperfect competition in a Burdett-Judd style search-

theoretic model. The present paper shares with Lester et al. (2019) an interest in the

interaction between private information and imperfect competition. In the framework

of Lester et al. (2019), the degree of competition is captured by the probability of

2The distribution of the size of buyers’ choice sets is related to the distribution of the price count
(i.e. the number of quotes a consumer obtains) in Bergemann, Brooks, and Morris (2021), and the
distribution of the number of firms in consumers’ consideration sets (i.e. the set of firms a consumer
considers for their purchase) in Armstrong and Vickers (2022).

3Models based on the Burdett and Judd (1983) search-theoretic model of imperfect competition
are featured in Kaplan and Menzio (2015), Kaplan and Menzio (2016), Kaplan, Menzio, Rudanko,
and Trachter (2019), Burdett and Menzio (2018), Albrecht, Menzio, and Vroman (2023b), Nord
(2023), Menzio (2024a), Menzio (2024b), and Mangin and Menzio (2024).
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competition (versus monopoly), while in our model it is captured by the seller-buyer

ratio or the average size of a buyer’s choice set. However, we find that the probability

of competition (versus monopoly) also turns out to play a crucial role in our model

because this probability directly affects the extent of quantity distortions.

Our model can be interpreted as an imperfectly competitive version of the model

of nonlinear monopoly pricing under incomplete information developed in Mussa and

Rosen (1978) and Maskin and Riley (1984). There is a small literature on imperfectly

competitive nonlinear pricing, which includes Rochet and Stole (1997), Armstrong

and Vickers (2001), and Yang and Ye (2008). While different in approach, our model

shares with this literature the fact that sellers compete to offer price-quantity schedules

that are attractive to buyers, rather than a monopolist determining a price-quantity

schedule solely for the purpose of price discrimination without competitors. However,

our two-stage search-theoretic approach is novel. We maintain tractability by using

competitive search to capture competition among sellers at the first stage when price-

quantity schedules are posted, and one-to-many meetings within submarkets to model

idiosyncratic buyer choice of seller from a finite choice set in the second stage.4

Building on the model developed in this paper, Bajaj and Mangin (2024) devel-

ops a search-theoretic model of monetary exchange based on Rocheteau and Wright

(2005). The authors allow for the possibility of both multilateral meetings with con-

sumer choice (as in this paper) and bilateral meetings (as in standard monetary search

models). The authors examine the effect of greater consumer choice on both market

power and the welfare cost of inflation. Surprisingly, they find that a greater degree

of consumer choice can have a non-monotonic effect on the market power of firms.

When they calibrate the model to U.S. data, they also find that greater consumer

choice leads to a quantitatively significant increase in the welfare cost of inflation.

3 Environment

Consider a static environment. There is a continuum of agents divided into two

types: buyers and sellers. Buyers are ex ante identical and sellers are ex ante identical.

4The sequential nature of search in our model, in which buyers first choose a submarket using
directed or competitive search and then face a “noisy” process of choosing or matching among the
random subset of sellers they meet, shares some similarities with the model of sequentially mixed
search developed in Shi (2023). However, in our model, buyers’ choice of seller within meetings is
driven by buyers’ private information about their preferences rather than by prices.
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The sets of buyers and sellers are denoted B and S respectively. All buyers participate

in the market at zero cost, but there is an entry decision by sellers. Only a subset

S̄ ⊆ S of sellers of measure n enter the market. Sellers may or may not choose to

enter at cost κ > 0 and thus n ∈ R+ is endogenous.5 We normalize |B| = 1, so the

measure n of sellers who enter is also the seller-buyer ratio.

One-to-many meetings. All sellers meet exactly one buyer, but the number of

sellers buyer i meets is a random variable Ni. For any given seller-buyer ratio n, the

probability that a buyer meets j ∈ {0, 1, 2, ...} sellers is given by a search technology

Pj : N → [0, 1] where Pj(n) = Pr(Ni = j) and
∑∞

j=0 jPj(n) = n, the expected number

of sellers a buyer meets or the average size of a buyer’s choice set.

Let m : R+ → [0, 1] be a function that represents the endogenous probability m(n)

that a buyer meets at least one seller, i.e. m(n) ≡ 1 − P0(n). This is the probability

that a buyer receives a meeting, so we refer to the function m as the meeting function.

The probability that a seller receives a meeting is one, but the probability a seller

receives a match equals m(n)/n, the probability the seller is chosen by a buyer.

Buyer’s choice of seller. After a meeting with j sellers takes place, the buyer

draws a valuation θ ∈ R+ for each of the j sellers they meet. These valuations

(θ1, θ2, ..., θj) are private information for the buyer. We assume that valuations are

drawn after meetings take place because we interpret this as buyers learning their

preferences after observing the goods offered by the sellers they meet (but before

purchasing). After learning their valuations, the buyer then chooses one seller.6

Distribution of valuations. Consumers’ private valuations θ ∈ R+ are drawn

from a bounded, continuous distribution with cdf G and pdf g = G′. The distribution

of valuations G is known to all agents. We assume the distribution G is not degenerate

and has no mass points, and Assumption 1 is maintained throughout.

Assumption 1. The distribution of valuations has twice-differentiable cdf G, where

g = G′ > 0, and bounded support Θ = [θ, θ̄] ⊆ R+.

Buyer and seller utility. Sellers can produce on demand any quantity q ∈ R+

of a divisible good at cost c(q), where c : R+ → R+, and we assume that c(0) = 0,

5We assume the set S is sufficiently large that n ≤ |S| always.
6Similarly to discrete choice models, we assume that consumers choose to purchase from a single

firm in each meeting. Alternatively, this could be endogenized through specification of preferences.
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c′(q) > 0, and c′′(q) ≥ 0 for all q > 0. A buyer who consumes quantity q of a good

with valuation θ receives utility given by a function ũ : R2
+ → R+ defined by

(1) ũ(q, θ) ≡ θu(q),

where u : R+ → R+ and we assume that u(0) = 0, u′(0) = ∞, u′(q) > 0, and

u′′(q) < 0 for all q > 0. As we discuss later in Section 6.1, our assumption on the form

of the utility function ũ will ensure that the single crossing condition holds.

4 Distribution of buyer types

The distribution of buyers’ choices, which we denote by G̃, is the distribution of

the valuations of the goods actually chosen by buyers. We can interpret a buyer’s

type as their valuation for their chosen good. The distribution of buyers’ choices is

therefore the distribution of buyer types. Intuitively, it is the outcome of a buyer’s

choice that represents the private information that is relevant to their chosen seller.

From now onwards, we refer to G̃ simply as the distribution of types.7

The distribution of types G̃ is endogenous. It depends on the equilibrium seller-

buyer ratio n and the equilibrium choices made by buyers regarding which seller to

purchase from. We will later prove that, in any equilibrium we consider, buyers

always choose the highest-valuation seller they meet. Therefore, the distribution of

types equals the distribution of the highest valuation among the sellers a buyer meets,

conditional on meeting a seller. It is this distribution we discuss here.

Throughout the paper, we assume that the search technology Pj is invariant,

as defined in Lester et al. (2015). The assumption of invariance is useful because

the function P0 captures everything we need to know about the search technology.

Examples of invariant meetings technologies include the family of negative binomial

distributions, which includes the geometric search technology as a special case and

the widely-used Poisson search technology as a limiting case. For a discussion of the

intuition behind Assumption 2, see Lester et al. (2015) and Mangin (2024).8

7Note that the distribution of buyer types G̃ is different than the distribution of purchased goods.
In equilibrium with private information, some meetings may not result in trade.

8As shown in Cai et al. (2025), any distribution which can be represented as a mixed Poisson
distribution satisfies Assumption 2. This is a very wide class of discrete probability distributions.
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Assumption 2. The search technology Pj is invariant, i.e. for all y ∈ [0, 1],

(2)
∞∑
j=0

Pj(n)y
j = P0(n(1− y))

where EP (Ni) = n and P0 : R+ → [0, 1] is continuous and infinitely differentiable.

Lemma 1 shows that invariant search technologies deliver standard properties

for the meeting function m, defined by m(n) ≡ 1 − P0(n). We refer to ηm(n) ≡
m′(n)n/m(n), the elasticity of the meeting function m, as the meeting elasticity. The

properties highlighted in Lemma 1 will later prove to be useful for some results.

Lemma 1. If Pj is invariant and n > 0, thenm′(n) > 0, m′′(n) < 0, limn→0m(n) = 0,

limn→0m
′(n) = 1, limn→∞m(n) = 1, limn→∞m′(n) = 0, and limn→∞m′′(n) = 0. We

also have η′m(n) < 0, limn→0 ηm(n) = 1, limn→∞ ηm(n) = 0, and d
dn

(
−m′′(n)n
m′(n)

)
> 0.

Lemma 2 presents an expression for the distribution of types. This expression

depends only on the function P0, which gives the probability a buyer meets no sellers.

For example, if the search technology is Poisson then P0(x) = e−x.

Lemma 2. If Pj is invariant and n > 0, the distribution of types has cdf

(3) G̃(θ;n) =
P0(n(1−G(θ)))− P0(n)

1− P0(n)
.

1. In the limit as n→ 0, we have G̃→ G and θ̃(n) → EG(θ).

2. In the limit as n→ ∞, we have G̃(θ;n) → 0 for all θ ∈ [θ, θ̄), and θ̃(n) → θ̄.

3. The distribution of types G̃ first-order stochastically dominates the distribution of

valuations G and the average type exceeds the average valuation, θ̃(n) > EG(θ).

4. If n > n′, the distribution G̃(θ;n) first-order stochastically dominates G̃(θ;n′).

5. For any f : Θ → R+ such that f ′ > 0, f̃ ′(n) > 0 where f̃(n) ≡
∫ θ̄
θ
f(θ)dG̃(θ;n).

Parts 1 and 2 of Lemma 2 say that, in the limit as n → 0, the distribution of

types G̃ converges to the distribution of valuations G, and in the limit as n→ ∞ the

distribution of types G̃ becomes degenerate at the maximum valuation θ.
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Part 3 of Lemma 2 states that the distribution of types G̃ first-order stochastically

dominates the distribution G, and the average valuation of a chosen good θ̃(n) ≡
EG̃(θ) (i.e. the average buyer type) is greater than the average valuation, EG(θ).

Part 4 of Lemma 2 says that an increase in the seller-buyer ratio n leads to a

first-order stochastic dominance shift in the distribution of types G̃(θ;n). Roughly

speaking, more seller entry leads to a “better” distribution of buyers’ chosen goods.

Part 5 of Lemma 2 implies the average type θ̃(n), i.e. the average valuation of a

chosen good, is strictly increasing in n, i.e. θ̃′(n) > 0. Intuitively, θ̃(n) is increasing

in the seller-buyer ratio because more sellers per buyer means greater choice of seller.

5 First-best allocation

Before we consider competitive search equilibrium, we determine the first-best

allocation. To do so, we solve an omniscient planner’s problem where the planner

has complete information about buyers’ valuations and is constrained only by search

frictions. We are interested in the first-best allocation as a benchmark only.9

The planner knows the search technology Pj and the cost of entry κ, as well as

the buyers’ valuations for each seller they meet. The planner chooses a seller-buyer

ratio n∗, a quantity function q∗ : Θ → R+, and a distribution of chosen goods with

cdf G̃ : Θ → [0, 1], in order to maximize the total surplus created minus the total cost

of seller entry, subject to the search frictions. That is, the planner solves:

(4) max
n∈R+,{qθ}θ∈Θ

{
m(n)

∫ θ̄

θ

[θu(qθ)− c(qθ)] dG̃(θ;n)− nκ

}

where G̃ represents the planner’s optimal choice of seller for each buyer.10

Define sθ ≡ θu(qθ) − c(qθ), the trade surplus (or match surplus) for a good with

valuation θ. Let q∗θ denote the first-best quantity for valuation θ and define s∗θ ≡
θu(q∗θ)− c(q∗θ). Assume that s∗0 ≥ 0 where s∗0 ≡ θu(q0)− c(q0) and q0 = q(θ), so there

9It is standard in the search literature to refer to this as the first-best allocation even though it is
constrained by search frictions. For example, see Davoodalhosseini (2019).

10The first-best distribution of choices will turn out to be equal to the buyers’ distribution of types
in equilibrium. Anticipating this, we use the same notation, G̃.
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is a (weakly) positive trade surplus for all goods. Define the expected trade surplus by

(5) s̃(n; {qθ}θ∈Θ) ≡
∫ θ̄

θ

[θu(qθ)− c(qθ)]dG̃(θ;n).

For simplicity of notation, throughout the paper we sometimes suppress the de-

pendence of the expected trade surplus s̃(n; {qθ}θ∈Θ) on the function q : Θ → R+ and

let s̃(n) denote s̃(n; {qθ}θ∈Θ) and s̃′(n) denote ∂s̃(n)/∂n.
The following assumption ensures the existence of a social optimum where n∗ > 0.

We maintain Assumption 3 throughout the remainder of the paper. Intuitively, this

condition says that the expected trade surplus in the limit as n→ 0, i.e. limn→0 s̃(n),

must be greater than the entry cost κ.11 It follows from our earlier assumptions that,

for all θ ∈ Θ, there exists a unique q∗θ ∈ R+ such that θu′(q∗θ) = c′(q∗θ).

Assumption 3. The cost of entry is not too high: EG[θu(q
∗
θ)− c(q∗θ)] > κ.

Proposition 1 states that there exists a unique first-best allocation (n∗, {q∗θ}θ∈Θ)
with n∗ > 0 and provides a characterization.

Proposition 1. There exists a unique first-best allocation and it satisfies:

1. For any θ ∈ Θ, the quantity q∗θ > 0 solves

(6) θu′(q∗θ) = c′(q∗θ).

2. The seller-buyer ratio n∗ > 0 satisfies

(7) m′(n∗)s̃(n∗; {q∗θ}θ∈Θ) +m(n∗)s̃′(n∗; {q∗θ}θ∈Θ) = κ.

3. The distribution of types G̃ is given by (3).

Equation (7) is a version of the generalized Hosios condition discussed in Mangin

and Julien (2021). Defining the meeting elasticity by ηm(n) ≡ m′(n)n/m(n) and the

surplus elasticity by ηs(n) ≡ s̃′(n)n/s̃(n), condition (7) is equivalent to

(8) ηm(n)︸ ︷︷ ︸
meeting elasticity

+ ηs(n; {q∗θ}θ∈Θ)︸ ︷︷ ︸
surplus elasticity

=
nκ

m(n)s̃(n; {q∗θ}θ∈Θ)︸ ︷︷ ︸
sellers’ surplus share

.

11Since G̃→ G as n→ 0, as verified in Lemma 2, we have limn→0 s̃(n) = EG[θu(q
∗
θ)− c(q∗θ)]
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We have not yet discussed equilibrium, but it is useful to refer to the term on the

right of (8) as the sellers’ surplus share. Given that our equilibrium features free entry

of sellers at cost κ, sellers’ total expected payoff will be equal to the total cost of seller

entry nκ, and the total surplus created is m(n)s̃(n). Therefore, the term on the right

will be sellers’ surplus share in equilibrium. The generalized Hosios condition (8) says

that constrained efficiency requires sellers’ surplus share to be equal to the meeting

elasticity plus the surplus elasticity. Since s∗θ is increasing in θ, Part 5 of Lemma 2

implies that the expected trade surplus s̃(n) is increasing in the seller-buyer ratio, i.e.

s̃′(n) > 0.12 Therefore, the surplus elasticity ηs(n) is positive.

Intuitively, more sellers per buyer means greater choice for buyers, thus increasing

the average trade surplus. Equivalently, there is a positive externality arising from

the effect of seller entry on the average surplus when there is consumer choice. When

the generalized Hosios condition (8) holds, both the standard matching externalities

and this novel externality are internalized, delivering constrained efficiency of entry.

6 Competitive search equilibrium

Competitive search is an equilibrium concept developed in Moen (1997) and Shimer

(1996). The basic idea is that either buyers or sellers, or sometimes “market makers”,

post contracts that specify the terms of trade offered. Search is directed in the sense

that buyers and sellers choose which submarket to enter, where each submarket corre-

sponds to a particular specification of the terms of trade. Commitment is key: buyers

and sellers who enter a submarket commit to trade at the terms specified within that

submarket. Within each submarket, buyers and sellers face search frictions.

We assume that each seller posts a menu of contracts to attract buyers. Sellers take

into account the expected relationship between the posted contracts and the seller-

buyer ratio n. We restrict sellers to post contracts that are price-quantity schedules of

the form (qθ, tθ), which specify the quantity of the good qθ and the payment or transfer

tθ contingent on the buyer’s valuation θ for their chosen seller. These contracts (qθ, tθ)

may depend on n, the expected number of sellers a buyer meets, but not on the actual

number of sellers a specific buyer meets (which is not observed by sellers).

Within each submarket, meetings take place, buyers choose sellers, and trade oc-

curs as described in Section 3. In any meeting, the buyer chooses the seller that

12It is established in the proof of Proposition 1 that both q∗θ and s∗θ are increasing in θ.
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maximizes vθ ≡ θu(qθ) − tθ, the buyer’s ex post trade surplus. The equilibrium dis-

tribution of types G̃ is determined by buyers’ optimal choices of sellers.

Within meetings, buyers’ valuations are private information and they cannot be

observed directly by any seller (including their chosen seller). However, buyers may

choose to reveal their private information to their chosen seller through their choice of

contract (qθ, tθ) offered by the chosen seller. By the revelation principle, it is without

loss of generality to focus on individually rational and incentive-compatible direct

mechanisms that induce buyers to truthfully reveal their private information.

Sellers post contracts subject to the following constraints: an individual rationality

(IR) constraint and an incentive compatibility (IC) constraint. The IR constraint is

(9) θu(qθ)− tθ ≥ 0

for all θ ∈ Θ. This condition states that buyers must receive a (weakly) positive ex

post trade surplus, otherwise they will not trade. The IC constraint is given by

(10) θu(qθ)− tθ ≥ θu(qθ′)− tθ′

for all θ, θ′ ∈ Θ. Intuitively, this condition states that a buyer with valuation θ cannot

do better by choosing a contract (qθ′ , tθ′) instead of (qθ, tθ).

Restriction of contract space. Our restriction on the contract space warrants

a brief discussion. We restrict sellers to post contracts of the form (qθ, tθ) because it

is more realistic in retail trade for sellers to post this simple form of contract. Given

that our model aims to achieve greater realism by introducing consumer choice, it is

important to also maintain realism with respect to the form of contracts sellers post.

Contracts of the form (qθ, tθ) are realistic for retail trade because they are equivalent

to (qθ, pθ) where pθ is the unit price. This is equivalent to sellers simply choosing a

function p(q) for unit prices based on the quantity. In retail trade, it is common for

sellers to set different unit prices depending on the quantity purchased (e.g. through

different package sizes and quantity discounts). By focusing on contracts of the form

(qθ, pθ), or equivalently (qθ, tθ), we can also compare our results to the standard theory

of nonlinear pricing in Mussa and Rosen (1978) and Maskin and Riley (1984).

At the start of the period, sellers enter and announce the submarkets {(qθ, tθ)}θ∈Θ,
implying an expected seller-buyer ratio n for each submarket. Buyers then choose
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a submarket in which to trade, in a manner consistent with expectations. Agents

trade in their chosen submarket. We let Ω denote the set of open submarkets ω. A

submarket ω is characterized by the menu of contracts and implied seller-buyer ratio,

({(qθ, tθ)}θ∈Θ, n)ω. Sellers choose a submarket ω to maximize expected profits:

(11) max
ω∈Ω

{
m(n)

n

∫ θ̄

θ

[−c(qθ) + tθ] dG̃(θ;n)− κ

}

taking into account that buyers’ ability to choose a submarket implies that buyers

receive the same expected payoff V b (the “market utility”) in all active submarkets:

(12) V b = m(n)

∫ θ̄

θ

[θu(qθ)− tθ] dG̃(θ;n).

In addition, the IR and IC constraints given by (9) and (10) must be satisfied.

It is convenient to describe the seller’s problem in the following alternative way.

Rearranging (11) and (12), the sellers’ problem is equivalent to solving the buyer’s

problem regarding choice of submarket:

(13) max
ω∈Ω

{
m(n)

∫ θ̄

θ

[θu(qθ)− tθ] dG̃(θ;n)

}

subject to the constraint that the measure n of sellers per buyer satisfies the following

condition in all submarkets (both active and inactive):

(14)
m(n)

n

∫ θ̄

θ

[−c(qθ) + tθ] dG̃(θ;n) ≤ κ

and n ≥ 0 with complementary slackness. In addition, the IR and IC constraints

given by (9) and (10) must be satisfied.13

The complementary slackness condition deserves further discussion. It says that

n > 0 and a submarket is active if and only if (14) holds with equality, i.e. sellers

receive zero expected profit after paying the entry cost κ. On the other hand, it says

that n = 0 and a submarket is inactive if and only if (14) is an inequality, i.e. sellers

would receive negative expected profits from entering this submarket even if the prob-

13The complementary slackness condition is really a restriction on n as a function of the menu
of posted contracts in a submarket, i.e. n({(qθ, tθ)}θ∈Θ). However, we omit the dependence on the
submarket {(qθ, tθ)}θ∈Θ in our notation both for notational simplicity and because we will later prove
there is only one active submarket in equilibrium with one implied seller-buyer ratio n.
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ability of trade is one. We restrict attention to equilibria in which this complementary

slackness condition holds for all submarkets, both active and inactive.14

6.1 Equilibrium

First, we define competitive search equilibrium. We will later prove that there is

a unique solution to this problem and thus all sellers post the same contracts and

there is only one active submarket in equilibrium. Anticipating this result, we denote

equilibrium by ({(qθ, tθ)}θ∈Θ, n). We focus on equilibria with positive entry, n > 0.

Definition 1. A competitive search equilibrium is a list ({(qθ, tθ)}θ∈Θ, n) and a dis-

tribution of types {G̃(θ;n)}θ∈Θ where (qθ, tθ) ∈ R2
+ for all θ ∈ Θ and n ∈ R+\{0}, such

that ({(qθ, tθ)}θ∈Θ, n) maximizes (13) subject to (14) plus the IR and IC constraints

(9) and (10), and {G̃(θ;n)}θ∈Θ represents buyers’ optimal choices of sellers.

In the lead-up to describing equilibrium, we first need to prepare the ground by

making some assumptions and providing some definitions. In particular, our proof

of the existence and uniqueness of equilibrium under private information requires

assumptions regarding the distribution of valuations G and the cost of entry κ.

Single crossing condition. The definition of buyer utility ũ(q, θ) ≡ θu(q) and

the assumption u′(q) > 0 together ensure the single crossing property holds because

∂2ũ(q, θ)

∂q∂θ
= u′(q) ≥ 0.

The fact that the single crossing property is satisfied in our environment is used in

Lemma 3, a well-known result that provides sufficient conditions for the IC constraints

to hold. Recalling that vθ ≡ θu(qθ)−tθ, the buyer’s ex post trading surplus, this lemma

simplifies the IC constraints when there is a continuous distribution of types.

Lemma 3. If the single crossing property holds, the incentive compatibility (IC) con-

straint holds for all θ ∈ Θ if (i) qθ is non-decreasing in θ and (ii) v′(θ) = u(qθ).

We use Lemma 3 to ensure the IC constraint holds when we solve for the equilib-

rium as an optimal control problem in the proof found in the Appendix.

14This provides an important restriction on beliefs outside of the equilibrium path, as discussed in
Shi (2009) and Menzio and Shi (2010).
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Virtual valuation function. The virtual valuation function ψG : Θ → R is

defined by ψG(θ) ≡ θ− 1−G(θ)
g(θ)

. It is common to assume the virtual valuation function

is weakly increasing as this is typically required to prove that qθ is non-decreasing. To

ensure this, we assume the distribution of valuations G has an increasing hazard rate,

hG : Θ → R defined by hG(θ) ≡ g(θ)
1−G(θ)

. Assumption 4 is maintained throughout.

Assumption 4. The distribution G has an increasing hazard rate, i.e. h′G(θ) > 0.

In our environment, what is important is that the distribution of types G̃ has an

increasing hazard rate and an increasing virtual valuation function. This is because

sellers know that whenever they are matched with a buyer, this must be because the

buyer chose that seller, i.e. they had the highest valuation among the sellers the buyer

met. From the seller’s perspective, the relevant buyer valuation is effectively a random

draw from the distribution of types, i.e. the endogenous distribution of valuations for

buyers’ chosen goods, not the exogenous distribution of valuations G.

The distribution of types G̃ has a hazard rate defined by hG̃(θ;n) ≡
g̃(θ;n)

1−G̃(θ;n)
. The

virtual valuation function of the distribution of types is defined by

(15) ψG̃(θ;n) ≡ θ − 1− G̃(θ;n)

g̃(θ;n)
.

Given Assumption 4, the following lemma establishes that G̃ has an increasing haz-

ard rate (i.e. increasing in type θ) and an increasing virtual valuation function (i.e.

increasing in type θ) for any invariant search technology Pj and any seller-buyer ratio.

Lemma 4. If Pj is invariant and n > 0, the hazard rate hG̃(θ;n) and virtual valuation

function ψG̃(θ;n) of the distribution of types G̃ have the following properties:

1. Both hG̃(θ;n) and ψG̃(θ;n) are increasing in buyer type θ, i.e.

∂hG̃(θ;n)

∂θ
> 0 and

∂ψG̃(θ;n)

∂θ
> 0.

2. Both hG̃(θ;n) and ψG̃(θ;n) decreasing in the seller-buyer ratio n, i.e.

∂hG̃(θ;n)

∂n
< 0 and

∂ψG̃(θ;n)

∂n
< 0.

Lemma 4 also says that the hazard rate and virtual valuation function of the

distribution of types G̃ are both decreasing in the seller-buyer ratio n.

15



Cost of entry. We maintain the following assumption throughout the paper.

Assumption 5. Let q0θ ≡ limn→0 qθ(n). The entry cost κ is not too high:

EG[θu(q
0
θ)− c(q0θ)] > κ.

Assumption 5 is necessary to ensure the existence of equilibrium where n > 0. It

says the expected trade surplus s̃(n) must be greater than κ in the limit as n → 0,

otherwise no sellers enter. Since we have G̃ → G in the limit as n → 0 by Lemma 2,

we have limn→0 s̃(n) = EG[θu(q
0
θ)− c(q0θ)] where q

0
θ ≡ limn→0 qθ(n).

15

There are two possible types of equilibria. There may be full coverage, i.e. all

consumer types choose to purchase.16 This may occur in either of two cases, depending

on the value of the virtual valuation function at θ. Alternatively, there may be partial

coverage, i.e. not all consumer types purchase but only types above a cut-off type.

Lemma 5. In any equilibrium with seller-buyer ratio n > 0, there exists a unique

cut-off buyer type θb(n) where θb(n) ≥ θ such that

1. If ψG(θ) > 0, then θb(n) = θ and equilibrium is full coverage with qθ > 0 for all

θ ∈ Θ.

2. If ψG(θ) = 0, then θb(n) = θ and equilibrium is full coverage with qθ > 0 for all

θ ∈ (θ, θ] and qθ = 0.

3. If ψG(θ) < 0, then θb(n) > θ and equilibrium is partial coverage with qθ = 0 for

all θ ∈ [θ, θb(n)] and qθ > 0 for all θ ∈ (θb(n), θ̄].

For simplicity, we normalize ψG(θ) = 0 and focus on the second case for full

coverage. That is, we assume that the virtual valuation function is equal to zero at

the minimum type θ. For our proofs, however, we consider the general case where we

may have ψG(θ) < 0 and partial coverage (not all consumer types purchase). In the

Appendix, we discuss partial coverage equilibria and show how our results extend.

15For any θ ∈ Θ, the value of q0θ is given by Lemma 10 in the Appendix.
16Note that the probability a consumer type is θ is zero, so this does not require qθ > 0.
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6.2 Full coverage equilibrium

We now present Proposition 2, which establishes the existence and uniqueness of

equilibrium with full coverage and provides a characterization.

Proposition 2. If ψG(θ) = 0, there exists a unique equilibrium with full coverage.

1. We have qθ = 0 and tθ = 0 and the trading cut-off is θb(n) = θ.

2. For any θ ∈ (θ, θ̄], the quantity qθ > 0 solves:

(16)

(
θ − ηm(n)

1− G̃(θ;n)

g̃(θ;n)

)
u′(qθ) = c′(qθ)

and the payment tθ > 0 is given by

(17) tθ = θu(qθ)−
∫ θ

θ

u(qx)dx.

3. The seller-buyer ratio n > 0 is strictly decreasing in κ and satisfies

(18) m′(n)s̃(n; {qθ}θ∈Θ) +m(n)s̃′(n; {qθ}θ∈Θ) = κ.

4. The zero profit condition is satisfied:

(19)
m(n)

n

∫ θ̄

θ

[−c(qθ) + tθ] dG̃(θ;n) = κ.

5. The distribution of buyer types G̃ is given by (3).

The decentralized equilibrium cannot deliver the first-best allocation. This is not

surprising due buyers’ private information, which distorts the quantities traded. We

recover two standard results: there is “no distortion at the top”, i.e. qθ = q∗θ for the

highest type θ = θ̄, but there is downwards distortion below, i.e. qθ < q∗θ for θ < θ̄.

Corollary 1. In any competitive search equilibrium, quantities are distorted down-

wards relative to the first-best for all θ ∈ (θ, θ̄), but there is no distortion at the top,

i.e. qθ̄ = q∗
θ̄
. There may be either under-entry or over-entry of sellers.

In terms of entry, there may be either under-entry or over-entry relative to the

first-best because the distortion in quantities traded due to buyers’ private information

induces a corresponding distortion in seller entry, which depends on quantities.

17



6.3 Equilibrium quantities

One way to measure of market power is to consider the probability of monopoly.

For any given seller-buyer ratio n, the probability πm(n) that a buyer’s meeting is a

monopoly is equal to the probability a buyer meets exactly one seller, which occurs

with probability P1(n), conditional on meeting at least one seller, which occurs with

probability 1− P0(n). The probability πc(n) that a buyer’s meeting is competitive is

equal to the probability a buyer meets two or more sellers, conditional on meeting at

least one seller, and therefore we have πc(n) = 1− πm(n).

For all search technologies that satisfy Assumption 2, we have the following equiva-

lence result, which says the probability of monopoly is equal to the meeting elasticity.17

All of the properties of the meeting elasticity ηm(n) in Lemma 1 thus apply to πm(n).

Lemma 6. If Pj is invariant and n > 0, the probability πm(n) that a buyer’s meeting

is a monopoly is equal to the meeting elasticity ηm(n), i.e. πm(n) = ηm(n).

Therefore, we can interpret expression (16) for equilibrium quantities as:

(20)

θ − πm(n)︸ ︷︷ ︸
probability of monopoly

1− G̃(θ;n)

g̃(θ;n)

u′(qθ) = c′(qθ).

We can now express the equilibrium quantities in the following manner.

Proposition 3. If ψG(θ) = 0, the equilibrium quantity for type θ is given by πc(n)︸ ︷︷ ︸
probability of competition

θ︸︷︷︸
valuation

+ πm(n)︸ ︷︷ ︸
probability of monopoly

ψG̃(θ;n)︸ ︷︷ ︸
virtual valuation

u′(qθ) = c′(qθ)

where ψG̃ is the virtual valuation function of the endogenous distribution of types G̃.

We can interpret the above expression as a kind of weighted average of the com-

petitive limit (which delivers the first-best quantities) and the monopoly benchmark

(which is standard except the distribution of types G̃ is endogenous).

As the seller-buyer ratio n varies between zero and infinity, we can nest any degree

of competition between the two extremes of monopoly (n → 0 and πm(n) → 1) and

17Lemma 6 follows from the fact that −P0(n)n = P1(n) if Assumption 2 holds. See Condition 2
in Mangin (2024) for a more general condition which is shown to be equivalent to Assumption 2.
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perfect competition (n → ∞ and πc(n) → 1). Below, we derive both the competitive

limit and the standard monopoly benchmark as limiting cases of Proposition 3.

Competitive limit. In the limit as n→ ∞, all meetings are competitive and the

probability of monopoly πm(n) converges to zero. We recover the first-best quantities:

(21) θu′(qθ) = c′(qθ).

We will later discuss the competitive limit in more detail in Section 7.4.

Standard monopoly benchmark. In the limit as n → 0, we have G̃ → G and

therefore ψG̃(θ;n) → ψG(θ). At the same time, there are no competitive meetings and

the probability of monopoly πm(n) converges to one. We thus obtain:

(22)

(
θ − 1−G(θ)

g(θ)

)
u′(qθ) = c′(qθ).

We therefore recover, as a limiting case, the standard expression for the equilibrium

quantities traded under monopoly pricing with incomplete information.

7 Effects of competition

In this section, we build towards the main result of our paper: in competitive search

equilibrium, greater competition through a higher seller-buyer ratio can alleviate the

distortions due to private information, bringing us closer to the first best.

While the seller-buyer ratio n is endogenous in our model, in this section we take n

as exogenous and interpret an increase in n as an increase in competition. This could

be endogenized by decreasing the entry cost κ, but we abstract from this here.

For simplicity, we continue to focus our discussion on the full coverage case where

we assume ψG(θ) = 0. We discuss the case of partial coverage in the Appendix, which

generalizes the results in this section. The Appendix also includes some additional

results regarding the effect of competition on market coverage, i.e. the proportion of

consumers who successfully purchase (which varies with the degree of competition).
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7.1 Informational distortion

First we consider how competition directly affects the informational distortion due

to private information. We can define the informational distortion by

(23) IG̃(θ;n) ≡
1− G̃(θ;n)

g̃(θ;n)
.

Except for the fact that the distribution of buyer types G̃ is endogenous in our model,

this is the “standard” informational distortion under monopoly given by (22). We

know the informational distortion IG̃(θ;n) is decreasing in θ because G̃ has an increas-

ing hazard rate by Lemma 4. Thus, the standard distortion due to private information

decreases for higher values of θ, with “no distortion at the top” because IG̃(θ̄;n) = 0.

Now consider the effect of the seller-buyer ratio n on the informational distortion.

It follows from Lemma 4 that the informational distortion IG̃(θ;n) is increasing in the

seller-buyer ratio n for any given θ because the hazard rate of G̃ is decreasing in n.

Let Ĩ(n) denote the average informational distortion, defined by

(24) Ĩ(n) ≡
∫ θ̄

θ

IG̃(θ;n)dG̃(θ;n).

The average informational distortion Ĩ(n) is also increasing in the seller-buyer ratio.18

The basic idea is that, as n increases, there are fewer “low types” but these low types

are subject to a greater informational distortion. This means that, if we did not con-

sider the effect of seller competition via competitive search, greater competition would

increase the average informational distortion. As we will see, however, competitive

search has a crucial effect on reducing the extent of the quantity distortion.

7.2 Quantity distortion

To determine the overall effect of greater competition on the quantity distortion,

we need to also consider the impact of competitive search, which ensures that sellers

compete to attract buyers through their choices of which menus of contracts to post.

18Note that substituting IG̃(θ;n) from (23) into (24) yields Ĩ(n) ≡
∫ θ̄

θ
(1 − G̃(θ;n))dθ, which is

equal to
∫ θ̄

θ
θg̃(θ;n)dθ − θ or θ̃(n)− θ, which is clearly increasing in n because θ̃′(n) > 0.
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We can define the quantity distortion δG̃(θ;n) by

(25) 1− δG̃(θ;n) ≡
f(qθ)

f(q∗θ)
,

where f(q) ≡ c′(q)/u′(q) and f ′ > 0 follows from our assumptions. To justify our

measure of the quantity distortion, suppose that c(q) = cq and u(q) = q1−b/(1− b) for

b ∈ (0, 1), which are standard assumptions. Then we have

(26) 1− δG̃(θ;n) = f

(
qθ
q∗θ

)
.

Given that f is an increasing function, 1 − δG̃(θ;n) moves in the same direction as

qθ/q
∗
θ with respect to n. Thus we can interpret δG̃(θ;n) as a measure of the quantity

distortion. As qθ → q∗θ , we have δG̃(θ;n) → 0, and as qθ → 0 we have δG̃(θ;n) → 1.

Using expression (20) for qθ and expression (21) for q∗θ plus definition (23) for the

informational distortion, we obtain

(27) δG̃(θ;n) = πm(n)︸ ︷︷ ︸
competitive effect

IG̃(θ;n)

θ
.︸ ︷︷ ︸

relative informational distortion

The term πm(n) reflects the competitive effect on the quantity distortion due to com-

petitive search, while the term IG̃(θ;n)/θ reflects the relative informational distortion.

With competitive search, the quantity distortion δG̃(θ;n) is strictly less than the

relative informational distortion because the probability of monopoly is below one,

i.e. πm(n) < 1 for any n > 0. The reason behind the lower quantity distortion under

competitive search is the fact that sellers are competing to offer contracts that are

attractive to buyers in order to attract more buyers to their own submarket. As a

result, sellers offer higher quantities than they otherwise would have in the absence

of competitive search. When competition is greater, the probability of monopoly

πm(n) is lower, reducing the quantity distortion. This result is clear because we know

the probability of monopoly πm(n) is decreasing in n. As the market becomes more

competitive and firms compete more intensely to attract buyers to their submarket,

the probability πm(n) decreases, thereby reducing the overall quantity distortion.

There are two opposing effects of the seller-buyer ratio n on the quantity distortion.

We know the informational distortion IG̃(θ;n) is increasing in the seller-buyer ratio,

but πm(n) is decreasing in n. It is unclear whether the overall quantity distortion
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δG̃(θ;n) is increasing or decreasing in the degree of competition through n.

In fact, Proposition 4 tells us that the competitive effect – which reduces the

quantity distortion by more when n is higher and competition is stronger – always

dominates. This competitive effect is sufficiently strong that the overall quantity

distortion δG̃(θ;n) is decreasing in the seller-buyer ratio or degree of competition.

Proposition 4. For any θ ∈ Θ, greater competition reduces the quantity distortion

δG̃(θ;n). That is, δG̃(θ;n) is decreasing in the seller-buyer ratio n.

The result in Proposition 4 that greater competition reduces the quantity distortion

for any given buyer type θ directly implies Corollary 2, which states that greater

competition increases the quantity traded qθ(n) for any given buyer type.19

Corollary 2. For any θ ∈ Θ, greater competition increases the quantity traded qθ(n).

That is, qθ(n) is increasing in the seller-buyer ratio n.

For any given buyer type θ, the quantity distortion δG̃(θ;n) is decreasing in the

seller-buyer ratio n. However, the distribution of types G̃ is endogenous and is itself

changing with n, so we still need to determine whether the average quantity distortion

is decreasing in n. To do this, we define the average quantity distortion by

δ̃(n) ≡
∫ θ̄

θ

δG̃(θ;n)dG̃(θ;n).

Proposition 5 tells us that the effect of competitive search is sufficiently strong

that the overall impact of competition on the average quantity distortion is negative.

Proposition 5. Greater competition reduces the average quantity distortion δ̃(n).

That is, δ̃(n) is decreasing in the seller-buyer ratio n.

With competitive search, greater seller entry can therefore reduce the average

quantity distortion arising from buyers’ private information. This is intuitive because

sellers are competing to offer contracts that are attractive to buyers. As competition

becomes more and more intense, sellers offer lower and lower quantity distortions.

Corollary 2 implies the average quantity increases with greater competition. There

are two reasons behind this result. First, we know from Corollary 2 that the quantity

traded for any given type θ is increasing in n. Second, greater competition induces a

19We write qθ(n) instead of qθ to emphasize the dependence on the seller-buyer ratio n.
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Figure 1: Example of average quantity distortion δ̃(n)

first-order stochastic dominance shift in the distribution of types by Lemma 2 because

buyers have greater choice. Because the equilibrium quantity qθ(n) is non-decreasing

in θ (as required by Lemma 3), this shift further increases the average quantity.

Corollary 3. Greater competition increases the average quantity traded q̃(n). That

is, q̃(n) is increasing in the seller-buyer ratio n.

Figure 1 illustrates how the average quantity distortion δ̃(n) decreases with greater

competition. For this example, we assume the search technology Pj is geometric and

the distribution G is uniform on [1, 2]. For example, if n = 1 the quantity distortion

is 23.1%, while if n = 5 the quantity distortion is 9.3%. As competition intensifies

and we reach n = 20 sellers per buyer, the quantity distortion is only 3.0%.

The average ratio of equilibrium quantity to the first-best quantity is a monotonic

transform of 1− δ̃(n) that depends on the parameters of the functions u(q) and c(q).

In Figure 2, the orange line depicts the average ratio of the equilibrium quantity to

the first-best quantity if c(q) = cq and u(q) = q1−b/(1− b) where c = 1 and b = 1/2.

For comparison, the blue line is 1 − δ̃(n) where δ̃(n) is our measure of the quantity

distortion depicted in Figure 1. For example, if n = 1 the average ratio of equilibrium

quantity to first-best quantity is 65.2%, while if n = 5 the average ratio is 85.1%. As
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Figure 2: Example of average quantity ratio qθ/q
∗
θ

we reach a highly competitive economy with n = 20 sellers per buyer, the average

ratio is 95.1% and the quantities traded are becoming very close to the first-best.

7.3 Nonlinear pricing

It is well known that when buyers’ valuations are private information, monopolists

offer nonlinear price schedules that offer quantity discounts in order to induce buyers

with higher valuations to purchase greater quantities (Maskin and Riley, 1984). In

this section, we verify that sellers offer quantity discounts in our environment where

there is competition between sellers and consumer choice. We also consider the effect

of competition, i.e. a higher seller-buyer ratio, on the intensity of nonlinear pricing.

Since q′(θ) > 0 for all trading buyer types, we can define a differentiable function

θ : (0, qθ̄) → R+ that gives the valuation θ as a function of quantity purchased. Now

let the payment for a given quantity q be defined by T (q) ≡ t(θ(q)) and define the

unit price by p(q) ≡ T ′(q), the incremental price of the q-th unit of the good.

We say that there are quantity discounts whenever p′(q) < 0. Proposition 6 verifies

that there are indeed quantity discounts, i.e. p′(q) < 0 in our environment. This result

extends to the partial coverage case where not all consumers choose to purchase.
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Proposition 6. There are quantity discounts in equilibrium, i.e. p′(q) < 0.

Define the price elasticity by ηp(q) ≡ −p′(q)q
p(q)

. Proposition 7 provides some sufficient

conditions under which the intensity of quantity discounting, as measured by the price

elasticity ηp(q), is decreasing in the seller-buyer ratio or degree of competition. This

result again extends to the partial coverage case described in the Appendix.

Proposition 7. Suppose that c(q) = cq and u(q) = q1−b/(1 − b) where b ∈ (0, 1).

Greater competition, i.e. a higher seller-buyer ratio n, decreases the intensity of quan-

tity discounts as measured by the price elasticity ηp(q) if the following holds:

g′(θ)θ

g(θ)
≥ −1.

The above condition on the density g is sufficient, but not necessary, for the inten-

sity of quantity discounts to be decreasing in the degree of competition. This condition

will certainly be true if G′′(θ) ≥ 0, although this is again not necessary. For example,

the sufficient condition G′′(θ) ≥ 0 holds if G is the uniform distribution.

7.4 Competitive limit

We have seen that greater competition can reduce the distortion in quantities

traded. This suggests that if the market is sufficiently competitive, i.e. the seller-

buyer ratio is sufficiently high, this distortion may be eliminated altogether.

Consider the limit as the seller-buyer ratio n → ∞. We refer to this as the

competitive limit (or the “frictionless” limit) because all buyers meet a large number

of sellers in each meeting. In the limit as n→ ∞, the distribution of types G̃ converges

to a degenerate distribution with support Θ = {θ̄}, i.e. all buyers have type θ̄. This is
because all buyers are offered a good with the highest valuation in this limiting case.

Proposition 8. In the competitive limit as n→ ∞,

1. All consumers have type θ̄, i.e. the valuation for their chosen good is θ̄.

2. The quantity traded qθ̄ satisfies θ̄u′(qθ̄) = c′(qθ̄).

The informational distortion is eliminated and we obtain the first-best allocation

in the competitive limit, i.e. qθ̄ = q∗
θ̄
for all trades. There are, in fact, two separate

reasons for this. First, the probability of monopoly πm(n) goes to zero and thus the
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quantity distortion in Proposition 3 disappears for any given buyer type θ, as discussed

in Section 6.3. Second, all buyers are of the highest type θ̄ in the competitive limit

as n→ 0 and there is always “no distortion at the top” for the highest type.

8 Conclusion

This paper introduces consumer choice into a competitive search model of retail

trade in which sellers compete to attract buyers by posting nonlinear price sched-

ules. We allow consumers to meet multiple sellers and choose a seller with whom to

trade. We find that the standard distortion in equilibrium quantities, which arises

in monopoly pricing under incomplete information, can be alleviated through greater

competition. With greater competition, sellers reduce the quantity distortion in order

to attract buyers to their own submarket in competitive search equilibrium. In the

competitive limit where the seller-buyer ratio becomes large, the effects of private

information are eliminated altogether and we obtain the first-best allocation.

In future research, it would be interesting to apply this framework to the question

of how nonlinear pricing is affected by the nature of the search technology, i.e. the dis-

tribution of the size of buyer’s choice sets. For example, does greater dispersion in the

number of sellers each buyer meets have a positive or a negative effect on consumers?

Can reducing dispersion bring us closer to achieving the first-best allocation, even in

the presence of private information? We leave these questions for future research.
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9 Appendix A: Partial coverage

In this Appendix, we generalize our results by considering partial coverage equi-

libria, i.e. equilibria in which not all consumer types choose to purchase.

9.1 Partial coverage equilibrium

Proposition 9 establishes the existence and uniqueness of equilibrium with partial

coverage and provides a characterization.

Before presenting Proposition 9, it will be useful to define ρ(θ;n) ≡ 1 − G̃(θ;n),

the probability that a buyer’s type is greater than θ. We also define ερ(θ;n) ≡
−θρ′(θ;n)/ρ(θ;n), the elasticity of ρ(θ;n) with respect to θ, where ρ′(θ;n) ≡ ∂ρ(θ;n)

∂θ
.

When we discuss market coverage below, we will see that ερ(θ;n) can be interpreted

as the elasticity of market coverage with respect to the trading cut-off type θ.

Proposition 9. If ψG(θ) < 0, there exists a unique equilibrium with partial coverage.

1. We have qθ = 0 and tθ = 0 for all θ ∈ [θ, θb(n)] where θb(n) > θ.

2. For any θ ∈ (θb(n), θ̄], the quantity qθ > 0 solves:

(28)

(
θ − ερ(θb(n);n)

1− G̃(θ;n)

g̃(θ;n)

)
u′(qθ) = c′(qθ)

and the payment tθ > 0 is given by

(29) tθ = θu(qθ)−
∫ θ

θ

u(qx)dx.

3. The seller-buyer ratio n > 0 is strictly decreasing in κ and satisfies

(30) m′(n)s̃(n; {qθ}θ∈Θ) +m(n)s̃′(n; {qθ}θ∈Θ) = κ.

4. The zero profit condition is satisfied:

(31)
m(n)

n

∫ θ̄

θ

[−c(qθ) + tθ] dG̃(θ;n) = κ.

5. The distribution of buyer types G̃ is given by (3).
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Again, the decentralized equilibrium cannot deliver the first-best allocation. Buy-

ers’ private information distorts the quantities traded, with may be either positive

but less than optimal, or zero. We again recover two standard results: there is no

distortion at the top (i.e. for the highest type) but downwards distortion below.

9.2 Market coverage

We can define market coverage µ(θb(n);n) as the proportion of consumers that

successfully purchase. Market coverage is endogenous and depends on the seller-buyer

ratio or degree of competition. Specifically, market coverage is equal to the meeting

probability for buyers m(n), multiplied by the probability that a buyer’s type (i.e. the

buyer’s valuation for their chosen seller) is above the trading cut-off θb(n). That is,

(32) µ(θb(n);n) = m(n)(1− G̃(θb(n);n)).

In the case of full coverage, we have θb(n) = θ and therefore µ(θb(n);n) = m(n).

While market coverage is not equal to one in this case due to search frictions, this is

the highest coverage possible for a given search technology and seller-buyer ratio.

Our first result is that greater competition increases the level of market coverage.

Before presenting this result, we provide a useful lemma which says that the trading

cut-off θb(n) is decreasing in the seller-buyer ratio n.

Lemma 7. The trading cut-off θb(n) is decreasing in n, i.e. θ′b(n) < 0.

This result tells us that an increase in competition through a higher seller-buyer

ratio n decreases the trading cutoff, which means that goods for which consumers

have lower valuations can trade in equilibrium when there are more competing firms.

The next result tells us that greater competition increases market coverage.

Proposition 10. Greater competition increases market coverage µ(θb(n);n). That is,

the proportion of buyers who purchase is increasing in the seller-buyer ratio n.

There are two different reasons behind this result. First, a higher seller-buyer ratio

increases the meeting probability for buyers by reducing the search frictions buyers

face. Second, a higher seller-buyer ratio increases the trading probability for a buyer

conditional on a meeting occurring. This is because more sellers means a higher

expected valuation for the buyer’s choice, which is more likely to be greater than a
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given trading cut-off θb(n), while at the same time greater competition means that

the trading cut-off is itself lower. Overall, this result tells us that a wider range of

consumers (i.e. with lower valuations) purchase when competition is greater.

9.3 Quantity distortion

Using expression (28) for qθ plus definition (23) for the informational distortion,

δG̃(θ;n) = ερ(θb(n);n)︸ ︷︷ ︸
competitive effect

IG̃(θ;n)

θ︸ ︷︷ ︸
relative informational distortion

for all θ > θb(n), and δG̃(θ;n) = 1 for θ ≤ θb(n). The term ερ(θb(n);n) reflects the

competitive effect on the quantity distortion due to competitive search, while the term

IG̃(θ;n)/θ reflects the relative informational distortion.

With competitive search, the quantity distortion δG̃(θ;n) is strictly less than the

relative informational distortion because the competitive effect ερ(θb(n);n) < 1 for any

n > 0.20 As we saw for the full coverage case, the reason behind the lower quantity

distortion under competitive search is the fact that sellers are competing to attract

more buyers to their own submarket by offering lower quantity distortions.

Lemma 8 says that when the seller-buyer ratio n is higher and competition is

greater, the competitive effect ερ(θb(n);n) is lower, reducing the quantity distortion.

Lemma 8. Greater competition decreases the competitive effect ερ(θb(n);n). That is,

the term ερ(θb(n);n) is decreasing in the seller buyer-ratio n.

As in the full coverage case, there are two opposing effects of the seller-buyer

ratio n on the quantity distortion. We know the informational distortion IG̃(θ;n)

is increasing in the seller-buyer ratio n. At the same time, Lemma 8 says that the

competitive effect ερ(θb(n);n) is decreasing in n. It is again unclear whether the overall

quantity distortion δG̃(θ;n) is increasing or decreasing in n.

Proposition 11 tells us that, for any trading buyer type θ > θb(n), the competitive

effect always dominates. This competitive effect is sufficiently strong that the quantity

distortion δG̃(θ;n) is decreasing in the seller-buyer ratio n for all traded goods, which

generalizes the result we saw for the full coverage case to partial coverage equilibrium.

20To see this, in the limit as n → 0 we have ερ(θb(n);n) = 1 because θ0b solves ψG(θb) = 0 by
Lemma 10 whenever ψG(θ) ≤ 0, which we have assumed. Also, we have ερ(θb(n);n) decreasing in n
by Lemma 8 so ερ(θb(n);n) < 1 for any n > 0.

29



Proposition 11. For any θ ∈ (θb(n), θ̄], greater competition reduces the quantity

distortion δG̃(θ;n). That is, δG̃(θ;n) is decreasing in the seller-buyer ratio n.

The result in Proposition 11 that greater competition reduces the quantity distor-

tion for any trading buyer type directly implies Corollary 4, which states that greater

competition increases the quantity traded qθ(n) for any trading buyer type θ.

Corollary 4. For any θ ∈ (θb(n), θ̄], greater competition increases the quantity traded

qθ(n). That is, qθ(n) is increasing in the seller-buyer ratio n.

For any trading type θ, the quantity distortion δG̃(θ;n) is decreasing in the seller-

buyer ratio n. At the same time, the distribution of types G̃ is changing with n, so it

remains to determine whether the average quantity distortion is decreasing in n.

Proposition 12 tells us that the effect of competitive search is sufficiently strong

that the overall impact of competition on the average quantity distortion is negative.

Proposition 12. Greater competition reduces the average quantity distortion δ̃(n).

That is, δ̃(n) is decreasing in the seller-buyer ratio n.

Corollary 4 implies that greater competition increases the average quantity traded.

As discussed for the full coverage case, this is driven by two separate reasons: the

increase in the quantity traded for any given type θ and the first-order stochastic

dominance shift in the distribution of types that is induced by greater choice. In partial

coverage equilibrium, there is also an additional reason why the average quantity

traded increases: more consumer types purchase with greater competition.

Corollary 5. Greater competition increases the average quantity traded q̃(n). That

is, q̃(n) is increasing in the seller-buyer ratio n.

As we saw for the full coverage case, greater competition reduces the average

quantity distortion due to buyers’ private information. This is intuitive because sellers

are competing to offer contracts that are attractive to buyers. As competition becomes

more and more intense, sellers offer lower and lower quantity distortions.

Propositions 6 and 7 also apply to the partial coverage case. That is, we have

quantity discounts in equilibrium and the intensity of nonlinear pricing is decreasing

in the degree of competition if the sufficient conditions in Proposition 7 hold.

In the competitive limit, we obtain Proposition 8, which says that all buyers have

the highest type θ̄ and therefore equilibrium is always full coverage, and the equilib-

rium quantities traded are the first-best quantities (i.e. “no distortion at the top”).
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10 Appendix B: Proofs

First, Lemma 9 summarizes some properties of invariant search technologies. Given

that Pj is invariant, we know from Cai et al. (2025) that P0 is a completely monotone

function and can thus be represented as a Laplace transform. Lemma 9 follows.21

Lemma 9. If Pj is an invariant meeting technology, then

1. We have P ′
0(x) < 0 and P ′′

0 (x) > 0 for all x ∈ R+\{0}.

2. We have limx→0 P0(x) = 1 and limx→0 P
′
0(x) = −1.

3. We have limx→∞ P0(x) = 0, limx→∞ P ′
0(x) = 0, and limx→∞ P ′′

0 (x) = 0.

Proof of Lemma 1

The properties of m follow immediately from m(n) = 1 − P0(n) and Lemma 9.

Given that Pj is invariant and P0 is a completely monotone function, we can ap-

ply Lemma 8 from Campbell, Ushchev, and Zenou (2024) to obtain η′m(n) < 0 and
d
dx

(
−m′′(x)x
m′(x)

)
> 0. The fact that limn→0 ηm(n) = 1 follows from L’Hopital’s rule. We

also have limn→∞ ηm(n) = limn→∞
P1(n)

1−P0(n)
= 0 since P1(n) = −nP0(n). Finally, the

fact that η′m(n) < 0 and limn→0 ηm(n) = 1 implies that ηm(n) < 1. ■

Proof of Lemma 2

The distribution of the maximum of j ≥ 1 draws is (G(θ))j, and weighting by the

probability Pj(n) that exactly j sellers meet a buyer, conditional on j ≥ 1, yields

(33) G̃(θ;n) =

∑∞
j=1 Pj(n)(G(θ))

j

m(n)
.

Given that we assume the search technology Pj is invariant, we have
∑∞

j=0 Pj(n)y
j =

P0(n(1− y)) and substituting into the above yields (3).

Part 1. Taking the limit as n→ 0, we have

lim
n→0

G̃(θ;n) = lim
n→0

(
P0(n(1−G(θ)))− P0(n)

m(n)

)
= G(θ)

21See, for example, Cai et al. (2025) and Mangin (2025) for further details.
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using L’Hopital’s rule and the fact that limz→0 P0(z) = 1 and limz→0 P
′
0(z) = −1 by

Lemma 9. Therefore, θ̃(n) → EG(θ).

Part 2. Taking the limit as n→ ∞, we have

lim
n→∞

G̃(θ;n) = lim
n→∞

(
P0(n(1−G(θ)))− P0(n)

m(n)

)
= 0

for any θ ∈ [θ, θ̄) and limn→∞ G̃(θ̄;n) = 1 because limz→∞ P0(z) = 0 by Lemma 9.

Part 3. For n > 0, we have G̃(θ;n) < G(θ) for all θ ∈ Θ. To see this, let

wj(n) = Pj(n)/m(n). Using (33), G̃(θ;n) =
∑∞

j=1wj(n)(G(θ))
j. Since G̃(θ;n) is a

weighted average of the term (G(θ))j for all j ≥ 1, and (G(θ))j < G(θ) for all j > 1

and θ ∈ (θ, θ̄), and G(θ)j = G(θ) for j = 1 and θ = θ or θ = θ̄, we have G̃(θ;n) < G(θ).

So G̃(θ;n) first order stochastically dominates G(θ) and θ̃(n) > EG(θ).

Part 4. Consider any f : Θ → R+ such that f ′ > 0. Re-stating Lemma 1

in terms of P0(x) gives d
dx

(
−P ′′

0 (x)x

P ′
0(x)

)
> 0. For any n1 and n2 such that n1 > n2,

Part 5 implies that f̃(n1) > f̃(n2), i.e.
∫ θ̄
θ
f(θ)dG̃(θ;n1) >

∫ θ̄
θ
f(θ)dG̃(θ;n2). Thus

G̃(θ;n1) ≤ G̃(θ;n2) and G̃(θ;n1) first order stochastically dominates G̃(θ;n2).

Part 5. Applying Leibniz’ integral rule gives us

f̃ ′(n) =

∫ θ̄

θ

f(θ)
∂g̃(θ;n)

∂n
dθ.

First, we show that there exists a unique cutoff θ̂ ∈ Θ such that ∂g̃(θ;n)
∂n

= 0, and we

have ∂g̃(θ;n)
∂n

> 0 for θ > θ̂ and ∂g̃(θ;n)
∂n

< 0 for θ < θ̂. To start with, we have

(34) g̃(θ;n) =
−ng(θ)P ′

0(n(1−G(θ)))

m(n)
.

Differentiating (34) with respect to n, we obtain

∂g̃(θ;n)

∂n
=
g(θ)P ′

0(x)

m(n)

(
−xP ′′

0 (x)

P′
0(x)

− (1− ηm(n))

)
where x = n(1−G(θ)). Since P ′

0(x) < 0 by Lemma 9, ∂g̃(θ;n)
∂n

> 0 if and only if

−P ′′
0 (x)x

P ′
0(x)

< 1− ηm(n).

Re-stating Lemma 1 in terms of P0(x) gives
d
dx

(
−P ′′

0 (x)x

P ′
0(x)

)
> 0. So there exists a unique
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solution x, and therefore a unique solution θ, such that the above holds with equality.

Defining θ̂ as the solution to this equality, we have ∂g̃(θ;n)
∂n

> 0 if and only if θ > θ̂, so

f̃ ′(n) ≡
∫ θ̂

θ

f(θ)
∂g̃(θ;n)

∂n
dθ +

∫ θ̄

θ̂

f(θ)
∂g̃(θ;n)

∂n
dθ.

We therefore have f̃ ′(n) > 0 if and only if

(35)

∫ θ̄

θ̂

f(θ)
∂g̃(θ;n)

∂n
dθ > −

∫ θ̂

θ

f(θ)
∂g̃(θ;n)

∂n
dθ > 0.

Given that f ′ > 0, and both sides of (35) are positive, a sufficient condition is∫ θ̄

θ̂

f(θ̂)
∂g̃(θ;n)

∂n
dθ ≥ −

∫ θ̂

θ

f(θ̂)
∂g̃(θ;n)

∂n
dθ,

which holds if and only if
∫ θ̄
θ̂
∂g̃(θ;n)
∂n

dθ ≥ −
∫ θ̂
θ
∂g̃(θ;n)
∂n

dθ or
∫ θ̄
θ
∂g̃(θ;n)
∂n

dθ ≥ 0. By Leibniz’

rule,
∫ θ̄
θ
∂g̃(θ;n)
∂n

dθ = ∂
∂n

∫ θ̄
θ
g̃(θ;n)dθ = 0, since

∫ θ̄
θ
g̃(θ;n)dθ = 1, so f̃ ′(n) > 0. ■

Proof of Proposition 1

The first-order condition with respect to qθ is

(36) m(n)[θu′(qθ)− c′(qθ)]g̃(θ;n) = 0

and the first order-condition with respect to n is

(37) m′(n)s̃(n; {qθ}θ∈Θ) +m(n)s̃′(n; {qθ}θ∈Θ) = κ.

We can verify that s∗θ = θu(q∗θ)− c(q∗θ) is strictly increasing in θ. Differentiating s∗θ,

ds∗θ
dθ

= u(q∗θ) + [θu′(q∗θ)− c′(q∗θ)]
dq∗

dθ
.

Since θu′(q∗θ)− c′(q∗θ) = 0 by (36) if n∗ > 0, we have
ds∗θ
dθ

= u(q∗θ) > 0 for all θ ∈ (θ, θ̄].

Given that s∗θ is strictly increasing in θ and s∗0 ≥ 0 where s∗0 ≡ θu(q0)− c(q0), we have

s∗θ ≥ 0 for all θ ∈ Θ. Therefore, all chosen goods θ ∈ Θ are traded (except possibly

θ). For all θ ∈ Θ, the quantity qθ satisfies θu
′(qθ) = c′(qθ).

Existence and uniqueness of the first-best allocation with n∗ > 0 follows from

the existence and uniqueness proofs for Proposition 2 provided Assumption 5 holds,
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except q0θ = q∗θ since q∗θ does not depend directly on n, so Assumption 3 suffices.

Since s∗θ is strictly increasing in θ, at the first-best the seller with the highest

valuation θ is chosen. The distribution of types G̃ is thus equal to (3). ■

Proof of Lemma 4

First, we show that the hazard rate hG̃(θ;n) is increasing in the buyer type θ, i.e.
∂hG̃(θ;n)

∂θ
> 0, and therefore the virtual valuation function is also increasing in θ, i.e.

we have
∂ψG̃(θ;n)

∂θ
< 0. Starting with (3) and letting x = n(1−G(θ)), we have

G̃(θ;n) =
P0(x)− P0(n)

m(n)

and therefore, using m(n) = 1− P0(n), we obtain

G̃(θ;n) =
m(n)−m(x)

m(n)

Next, differentiating with respect to θ yields

(38) g̃(θ;n) =
ng(θ)m′(x)

m(n)
.

Therefore, we obtain
1− G̃(θ;n)

g̃(θ;n)
=

m(x)

ng(θ)m′(x)
,

which, using the fact that x = n(1−G(θ)), is equivalent to

(39)
1− G̃(θ;n)

g̃(θ;n)
=

m(x)

m′(x)x

(
1−G(θ)

g(θ)

)
.

The hazard rate of the distribution G̃(θ;n) is thus given by

(40) hG̃(θ;n) = ηm(n(1−G(θ)))hG(θ)

where ηm(x) =
m′(x)x
m(x)

and hG(θ) =
1−G(θ)
g(θ)

. The result follows immediately from (40)

plus Lemma 1, which implies that η′m(x) < 0 and therefore ηm(x) is increasing in θ,

plus our assumption that G has an increasing hazard rate, i.e. h′G(θ) > 0.

Next, we verify the hazard rate hG̃(θ;n) is decreasing in the seller-buyer ratio n,

i.e.
∂hG̃(θ;n)

∂n
< 0, and therefore the virtual valuation function is also decreasing in n,

i.e.
∂ψG̃(θ;n)

∂n
< 0. From (40) above, we can write hG̃(θ;n) = ηm(n(1 − G(θ)))hG(θ).
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Given that η′m(x) < 0, it is clear that the hazard rate is decreasing in n. ■

Proof of Lemma 5

To prove this result, we use Lemma 10 and the fact that Lemma 7 in Appendix A

tells us that θ′b(n) < 0 provided that θb(n) > θ, which is a lower bound for θb(n).

Lemma 10. For all θ ∈ (θ0b , θ̄], the quantity q0θ ≡ limn→0 qθ(n) solves(
θ − 1−G(θ)

g(θ)

)
u′(qθ) = c′(qθ).

1. If ψG(θ) > 0, then θ0b = θ and q0θ > 0 for all θ ∈ Θ.

2. If ψG(θ) = 0, then θ0b = θ and q0θ = 0 for θ = θ and q0θ > 0 for all θ ∈ (θ, θ̄].

3. If ψG(θ) < 0, then θ0b > 0 and q0θ = 0 for all θ ∈ [θ, θ0b ] and q0θ > 0 for all

θ ∈ (θ0b , θ̄] where θ
0
b is the unique solution to ψG(θ) = 0.

Proof. In the limit as n → 0, we have G̃(θ;n) → G(θ) by Lemma 2. Also, as

n→ 0, we have m(n) → 0 and ηm(n) → 1 by Lemma 1. It is clear that δ(n) → ∞ as

n→ 0. Lemma 10 follows from this fact plus expressions (60) and (61). ■

Part 1. If ψG(θ) > 0, then θ0b = θ by Lemma 10. Therefore, Lemma 7 implies that

θb(n) = θ for any n > 0, and qθ > 0 for all θ ∈ Θ. This follows from the fact that qθ

is strictly increasing in θ for θ > θb(n) by Lemma 14.

Part 2. If ψG(θ) = 0, then θ0b = θ by Lemma 10. Therefore, Lemma 7 implies that

θb(n) = θ for any n > 0, and qθ > 0 for all θ ∈ (θ, θ] and qθ = 0. This uses the fact

that qθ is strictly increasing in θ for θ > θb(n) by Lemma 14.

Part 3. If ψG(θ) < 0, then by Lemma 10 we have θ0b > θ and q0θ = 0 for all

θ ∈ [θ, θ0b ] and q
0
θ > 0 for all θ ∈ (θ0b , θ̄] where θ

0
b is the unique solution to ψG(θ) = 0.

For any n > 0, the fact that θ′b(n) < 0 implies that θb(n) < θ0b where ψG(θ
0
b ) = 0. ■

Proof of Propositions 2 and 9

We solve for the equilibrium in two stages. First, we take n as given and solve for

sellers’ posted contracts {(qθ, tθ)}θ∈Θ (inner maximization problem). Second, we solve

for n (outer maximization problem) given {(qθ, tθ)}θ∈Θ.
We first solve the inner and outer maximization problems. Next, we prove Parts

1 to 8. Finally, we prove existence and uniqueness of equilibrium.
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Stage 1. Inner maximization problem

Taking n > 0 as given (we later prove this), the problem is to maximize (13)

subject to (14) at equality, plus the IC constraint (10) and the IR constraint (9).

Ignoring constants, the inner maximization problem is:

(41) max
{(qθ,tθ)}θ∈Θ

{
m(n)

∫ θ̄

θ

[θu(qθ)− tθ] dG̃(θ;n)

}
,

subject to

(42)
m(n)

n

∫ θ̄

θ

[−c(qθ) + tθ] dG̃(θ;n) = κ,

and, for all θ, θ′ ∈ Θ,

θu(qθ)− tθ ≥ θu(qθ′)− tθ,(43)

θu(qθ)− tθ ≥ 0,(44)

tθ, qθ ≥ 0.(45)

To solve problem (41), we transform this problem using Lemma 3. Recalling that

vθ ≡ θu(qθ) − tθ, the buyer’s ex post trading surplus, Lemma 3 simplifies the IC

constraints because the single crossing property (6.1) holds. In particular, Lemma 3

says the IC constraints hold if qθ is non-decreasing and v′(θ) = u(qθ).

We can use vθ ≡ θu(qθ)− tθ and Lemma 3 to re-write the problem as an optimal

control problem where qθ is the control variable, vθ is the state variable, and δ is the

Lagrange multiplier associated with the seller entry constraint (42).

We take n and δ as given and later solve for these. Using vθ ≡ θu(qθ) − tθ to

eliminate tθ in the above, and substituting in the constraint (42), the problem becomes

(46) max
{(qθ,vθ)}θ∈Θ

{
m(n)

∫ θ̄

θ

{(1− δ)vθ + δ [θu(qθ)− c(qθ)]} g̃(θ;n)dθ − δnk

}
,

subject to v0 = 0 and qθ is non-decreasing, and for all θ ∈ Θ,

v̇θ = u(qθ),(47)

qθ, vθ ≥ 0.(48)
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The inner maximization problem is a standard optimal control problem with qθ as

the control variable and vθ as the state variable. We can therefore apply the Maximum

Principle to find the necessary conditions for the optimal path of the control and state

variables. To solve the inner maximization problem, we ignore the condition that qθ

is non-decreasing and later verify that it holds in Lemma 14.

Ignoring constants, the current value Hamiltonian for this problem is:

(49) H = m(n){(1− δ)vθ + δ [θu(qθ)− c(qθ)]}g̃(θ;n) + λθu(qθ)

where λθ is the costate variable, and the Lagrangian is:

L = m(n){(1− δ)vθ + δ [θu(qθ)− c(qθ)]}g̃(θ;n) + λθu(qθ) + θ̂θqθ + ηθvθ

where θ̂θ and ηθ are the Lagrangian multipliers associated with the non-negativity

constraint and IR constraint respectively.

The first-order conditions and the transversality condition are as follows:

(50)
∂L

∂qθ
= m(n)δ [θu′(qθ)− c′(qθ)] g̃(θ;n) + λθu

′(qθ) + θ̂θ = 0,

(51)
∂L

∂vθ
= (1− δ)m(n)g̃(θ;n) + ηθ = −λ̇θ,

(52)
∂L

∂λθ
= v̇θ = u(qθ),

(53) λθ̄vθ̄ = 0.

For the inequality constraints, the conditions are:

θ̂θ ≥ 0, θ̂θqθ = 0,(54)

ηθ ≥ 0, ηθvθ = 0.(55)

The following lemma provides an expressions for λθ.

Lemma 11. For all θ ∈ [θ, θ̄], we have the following:

(56) λθ = m(n)(1− δ)[1− G̃(θ;n)] +

∫ θ̄

θ

ηxdx.
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Proof. Start with the fact that

(1− δ)m(n)g̃(θ;n) + ηθ = −λ̇θ

from the first-order condition (51) above. Integrating both sides over [θ, θ̄], we obtain

−
∫ θ̄

θ

λ̇xdx =

∫ θ̄

θ

(1− δ)m(n)g̃(x;n)dx+

∫ θ̄

θ

ηxdx

and therefore

−(λθ̄ − λθ) = m(n)(1− δ)

∫ θ̄

θ

g̃(x;n)dx+

∫ θ̄

θ

ηxdx.

The transversality condition λθ̄vθ̄ = 0 implies λθ̄ = 0 since vθ̄ > 0. Setting λθ̄ = 0 in

the above yields

(57) λθ = m(n)(1− δ)

∫ θ̄

θ

g̃(x;n)dx+

∫ θ̄

θ

ηxdx,

and using
∫ θ̄
θ
g̃(x;n)dx = [G̃(x;n)]θ̄θ = 1− G̃(θ;n) yields (56). ■

Lemma 12. If ψG(θ) = 0, we have the following:

(58) δ =
1

1− θg̃(θ;n)

1 +

∫ θ̄
θ
ηxdx

m(n)

 .

Proof. To start with, we have

m(n)δ [θu′(qθ)− c′(qθ)] g̃(θ;n) + λθu
′(qθ) + θ̂θ = 0

from the first-order condition (50) for qθ. Dividing both sides by u′(qθ), we obtain

m(n)δ

[
θ − c′(qθ)

u′(qθ)

]
g̃(θ;n) + λθ =

−θ̂θ
u′(qθ)

.

Taking the limit as qθ → 0, and using limq→0 u
′(q) = +∞ and limq→0

c′(q)
u′(q)

= 0 yields

lim
q→0

[
m(n)δ

[
θ − c′(q)

u′(q)

]
g̃(θ;n) + λθ +

θ̂θ
u′(q)

]
= m(n)δθg̃(θ;n) + λθ = 0
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for any θ ≤ θb(n) and therefore λθ = −m(n)δθg̃(θ;n) for any θ ≤ θb(n). In particular,

λθ = −m(n)δθg̃(θ;n).

Next, applying Lemma 11 to the special case θ = θ, we have

λθ = m(n)(1− δ) +

∫ θ̄

θ

ηxdx.

Equating these two expressions, we obtain (58). ■

To determine qθ for all θ ∈ Θ, we need to determine δ. By Lemma 5, there are

three cases to consider. For all three cases, for any θ ∈ (θb(n), θ̄], we have qθ > 0 and

therefore θ̂θ = 0, so qθ solves

(59) m(n)δ [θu′(qθ)− c′(qθ)] g̃(θ;n) = −λθu′(qθ).

Using Lemma 11, plus
∫ θ̄
θ
ηxdx = 0 for all θ ≥ θb(n) since ηθ = 0 for θ > θb(n),

λθ = m(n)(1− δ)[1− G̃(θ;n)]

for any θ ∈ Θ. Substituting into (59), we obtain

(60) (θ − ϕ(θ;n))u′(qθ) = c′(qθ)

where

(61) ϕ(θ;n) =

(
δ − 1

δ

)(
1− G̃(θ;n)

g̃(θ;n)

)
.

If ψG(θ) = 0, then θb(n) = θ and Lemma 12 implies that the value of δ is

δ =
1

1− θg̃(θ;n)
.

Using the decomposition (39), this simplifies to

(62) δ =
1

1− θg(θ)ηm(n)
.

If ψG(θ) = 0, then θg(θ) = 1 and the above expression for δ simplifies.

If ψG(θ) < 0, we have θb(n) − ϕ(θb(n);n) = 0 from Lemma 13 below. Using this
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fact, plus expression (61), the value of δ is given by the following expression:

(63) δ =
1

1− θb(n)g̃(θb(n);n)

1−G̃(θb(n);n)

.

Lemma 13. If ψG(θ) < 0, we have θ = ϕ(θ;n) for all θ ≤ θb(n).

Proof. Suppose that ψG(θ) < 0. For θ = θb(n), we have qa = 0. Using (60),

lim
θ→θb(n)

(θ − ϕ(θ;n)) = lim
θ→θb(n)

[
1− ϕ(θ;n)

θ

]
θ = lim

q→0

c′(q)

u′(q)
= 0

since limq→0
c′(q)
u′(q)

= 0 by assumption. Therefore, by continuity of the function qθ, we

have either ϕ(θb(n);n)
θb(n)

= 1, or equivalently θ = ϕ(θb(n);n), or θb(n) = 0. We know that

θb(n) > θ if ψG(θ) < 0 and θ ≥ 0, so we have θ = ϕ(θ;n) for all θ ≤ θb(n). ■

Stage 2. Outer maximization problem

The outer maximization problem we solve next is

(64) max
n,δ

{J(n, δ)− δnk} ,

where we define

(65) J(n, δ) ≡ max
{(qθ,vθ)}θ∈Θ

{
m(n)

∫ θ̄

θ

{(1− δ)vθ + δ [θu(qθ)− c(qθ)]} g̃(θ;n)dθ

}
,

subject to v0 = 0 and, for all θ ∈ Θ, constraints (47) and (48).

To solve the outer maximization problem, the function J(n, δ) is equivalent to

(66) J(n, δ) = max
{(qθ,vθ)}θ∈Θ

{ ∫ θ̄
θ
m(n){(1− δ)vθ + δ [θu(qθ)− c(qθ)]}g̃(θ;n)dθ

+
∫ θ̄
θ
[ηθvθ + λθu(qθ) + θθqθ] dθ

}
.

Define s̃(n) ≡
∫ θ̄
θ
sθdG̃(θ;n) and ṽ(n) ≡

∫ θ̄
θ
vθdG̃(θ;n). Returning to our original

formulation to eliminate δ, the above problem is equivalent to maxn Ĵ(n) where

Ĵ(n) = max
{(qθ,vθ)}θ∈Θ

{
m(n)ṽ(n) +

∫ θ̄

θ

[ηθvθ + λθu(qθ) + θθqθ] dθ

}
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subject to the constraint

(67)
m(n)

n
[s̃(n)− ṽ(n)] ≤ κ

and n ≥ 0 with complementary slackness. Using the envelope theorem, the first-order

condition for n is

(68) m′(n)ṽ(n) +m(n)ṽ′(n) = 0.

Proof of Parts 1 to 5 for Propositions 2 and 9

Part 1. Follows from Lemma 5.

Part 2. From above, for any θ ∈ [θb(n), θ̄], we have

(θ − ϕ(θ;n))u′(qθ) = c′(qθ)

where, using expression (61) for ϕ(θ;n), we have

(69) ϕ(θ;n) =

(
δ − 1

δ

)(
1− G̃(θ;n)

g̃(θ;n)

)

where δ is given by (62) for Proposition 2 and (63) for Proposition 9.

Also, v̇θ = u(qθ) implies vθ − v0 =
∫ θ
θ
u(qx)dx, so vθ =

∫ θ
θ
u(qx)dx since v0 = 0. We

can derive tθ from vθ using the fact that vθ ≡ θu(qθ)− tθ.

Part 3. The first-order condition for n > 0 given by (68) can be written as

(70) m′(n)s̃(n) +m(n)s̃′(n) = κ,

using the constraint (67) at equality. More precisely, this is equivalent to

m′(n)s̃(n; {qθ}θ∈Θ) +m(n)s̃′(n; {qθ}θ∈Θ) = κ.

The fact that n is strictly decreasing in κ is proven in Lemma 17 below.

Part 4. The zero profit condition is given by (67), using the definition of vθ.

Part 5. Since vθ is increasing in θ, the highest valuation is always chosen by buyers

and this is their “type”. Therefore the cdf of buyer types is given by (3). ■
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Proof that qθ is non-decreasing for Propositions 2 and 9

Finally, we verify that qθ is non-decreasing, as required for Lemma 3.

Lemma 14. The function q(.) is non-decreasing for all θ ∈ Θ. In addition, q′(θ) > 0

for all θ ∈ (θb(n), θ̄].

Proof. For all θ < θb(n), we have qθ = 0 and q′(θ) = 0. For all θ ∈ [θb(n), θ̄],

implicit differentiation of

(θ − ϕ(θ;n))u′(qθ) = c′(qθ)

yields

(71) q′(θ) =
−[1− ϕ′(θ)]u′(qθ)

[θ − ϕ(θ;n)]u′′(qθ)− c′′(qθ)

where ϕ(θ;n) is given by (69). Since u′(qθ) > 0 and u′′(qθ) < 0 and c′′(qθ) > 0 and

θ−ϕ(θ;n) > 0, to establish q′(θ) > 0 it suffices to show that ϕ′(θ) < 1. We know from

Lemma 4 that G̃ has an increasing hazard rate, so the right term in (69) is decreasing

in θ. Therefore, we have ϕ′(θ) < 0 and q′(θ) > 0 follows from (71). ■

Proof of existence and uniqueness for Propositions 2 and 9

We first prove existence and uniqueness of the solution to the inner maximization

problem and then prove the same for the outer maximization problem.

Inner maximization. We prove that, given n from the outer maximization prob-

lem, the solution to the inner maximization problem exists and is unique.

Existence. A solution to the problem exists because the set of admissible paths is

non-empty and compact, and there exists an admissible path for which the objective

is finite. For example, the path qθ = 0 and vθ = (θ−1)u(qθ) for all θ ∈ Θ is admissible

(since v0 = 0, qθ ≥ 0, vθ ≥ 0, and v̇θ = u(qθ) + (θ − 1)u′(qθ)q
′(θ) = u(qθ), and

q′(θ) ≥ 0). Also, the objective is finite under this path. Finally, the set of feasible

paths is compact since qθ ∈ [0, q∗
θ̄
] where q∗

θ̄
solves θ̄u′(qθ̄) = c′(qθ̄) and vθ ∈ [0, vθ̄]

where vθ̄ = u(q∗
θ̄
)[θ̄ − θ].

Uniqueness. The Hamiltonian H(qθ, vθ, λθ) given by (49), where λθ is the co-

state variable given by the Maximum Principle, is strictly concave in the control and
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state variables (qθ, vθ) for all θ. So, the solution is an optimum that solves the inner

maximization problem and is unique. To establish strict concavity, differentiating

H(qθ, vθ, λθ) with respect to qθ yields

∂H

∂qθ
= m(n)δ[u′(qθ)− c′(qθ)]g̃(θ;n) + λθu

′(qθ),

∂2H

∂q2θ
= m(n)δ[u′′(qθ)− c′′(qθ)]g̃(θ;n) + λθu

′′(qθ) ≡ −X,

where X > 0, since u′′(qθ) < 0 and c′′(qθ) > 0. Differentiating H(qθ, vθ, λθ) with

respect to vθ, we obtain ∂H
∂vθ

= m(n)(1− δ)g̃(θ;n) and ∂2H
∂v2θ

= 0. Finally, ∂2H
∂vθ∂qθ

= 0, so

we get the Hessian matrix, H =

[
−X 0

0 0

]
. Since xTHx < 0 for all x ∈ R2\{0}, the

Hessian H is negative definite and the Hamiltonian is strictly concave in (qθ, vθ).

Outer maximization. We prove that, given {(qθ, vθ)}θ∈Θ from the inner maximiza-

tion problem, the solution n to the outer maximization problem exists and is unique,

and n is an interior solution with n > 0 if Assumption 5 holds. To establish this result,

we first prove that there exists a non-empty set of solutions n, denoted by N(κ), that

solves the problem. We then show that equilibrium is unique if n > 0 for all n ∈ N(κ),

and finally we prove that n > 0 for any n ∈ N(κ).

Taking {(qθ, vθ)}θ∈Θ as given by the inner maximization problem, and ignoring

constants, the outer maximization problem is equivalent to

(72) max
n

{
m(n)

∫ θ̄

θ

[θu(qθ)− tθ] dG̃(θ;n)

}
,

subject to

(73)
m(n)

n

∫ θ̄

θ

[−c(qθ) + tθ] dG̃(θ;n) ≤ κ

and n ≥ 0 with complementary slackness, where {(qθ, vθ)}θ∈Θ solves the inner maxi-

mization.

Lemma 15. The set of solutions N(κ) is nonempty and upper hemicontinuous.
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Proof. Since m(n) is a bijection, we can rewrite (72) in terms of m as follows:

max
m

{
m

∫ θ̄

θ

[θu(qθ)− tθ] dG̃(θ;m)

}
.

The objective function is continuous and, without loss of generality, we can restrict

m to the compact set m ∈ [0, 1]. The constraint (73) is therefore m ∈ Γ(κ) for all

κ ≥ 0, where Γ(κ) is a continuous and compact-valued correspondence. Applying the

Theorem of the Maximum (Theorem 3.6 in Stokey, Lucas, and Prescott, 1989), the

correspondence that gives the set of solutions for m is nonempty and upper hemicon-

tinuous, so N(κ) is nonempty and upper hemicontinuous. ■

Lemma 16 establishes that any strictly positive solution n ∈ N(κ) must be unique.

Lemma 16. If N+ ⊆ N(κ) and N+ ⊆ R+\{0}, then N+ = {n}.

Proof. Consider any solution n ∈ N(κ) such that n > 0. Defining Φ(n) ≡
m(n)ṽ(n), the solutions n satisfy the first-order condition (68), which says Φ′(n) = 0.

We show that Φ′′(n) < 0 and thus any solution is unique. Using (34), we have

Φ(n) = −
∫ θ̄

θ

P ′
0(n(1−G(θ)))vθg(θ)dθ.

Using Leibniz’s integral rule, plus the envelope theorem,

Φ′(n) =

∫ θ̄

θ

−P ′
0(n(1−G(θ)))vθg(θ)dθ −

∫ θ̄

θ

n(1−G(θ))P ′′
0 (n(1−G(θ)))vθg(θ)dθ.

By integration by parts on the second integral in Φ′(n) above, we obtain

(74) Φ′(n) =

∫ θ̄

θ

−P ′
0(n(1−G(θ)))(1−G(θ))v′(θ)dθ − P ′

0(n)v(θ) > 0.

Differentiating (74), we find that

(75) Φ′′(n) = −

(∫ θ̄

θ

P ′′
0 (n(1−G(θ))(1−G(θ))2v′(θ)dθ + P ′′

0 (n)v(θ)

)
< 0.

The fact that Φ′′(n) < 0 follows from the fact that P ′′
0 (x) > 0 by Lemma 9, plus the

fact that v′(θ) = u(qθ) ≥ 0 for all θ and v′(θ) > 0 for some θ and also v(θ) = 0. ■
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From Lemma 15, for any given κ ≥ 0, there exists a non-empty set of solutions

N(κ) that solves problem (72). We now prove that, for any n ∈ N(κ), we have

n ∈ R+\{0} if Assumption 5 holds. Also, the function n(κ) is strictly decreasing in κ.

Lemma 17. Any solution n ∈ N(κ) is interior, i.e. n ∈ R+\{0}. The function n(κ)

is strictly decreasing in κ.

Proof. First, we show there exists an interior solution n > 0. Define Λ(n) ≡
m(n)s̃(n). The first-order condition (70) says Λ′(n) = κ. We prove there exists n > 0

such that Λ′(n) = κ if Assumption 5 holds. We have limn→∞ Λ′(n) = 0, and

lim
n→0

Λ′(n) =

∫ θ̄

θ

lim
n→0

s(θ; qθ(n))dG(θ)

where limn→0 s(θ; qθ(n)) = s(θ; limn→0 qθ(n)). If the following condition holds:

(76) EG[θu(q
0
θ)− c(q0θ)] > κ

where q0θ ≡ limn→0 qθ(n), there exists n > 0 such that Λ′(n) = κ provided that

Λ′′(n) < 0 (proven below). Lemma 10 describes how to calculate q0θ ≡ limn→0 qθ(n).

Next, any interior solution n > 0 is better than n = 0. Define the value function:

V (κ) ≡ max
n

{
m(n)

∫ θ̄

θ

[θu(qθ)− tθ] dG̃(θ;n)

}
.

We have V (κ) ≡ maxn {m(n)ṽ(n)}. If n = 0 then V (κ) = 0. If n > 0, V (κ) ≡
maxn {m(n)s̃(n)− nκ} using constraint (73) with equality. Letting Λ(n) = m(n)s̃(n),

we have V (κ) > 0 if Λ(n)− nκ > 0. Thus the candidate solution n > 0 is better than

n = 0 if Λ(n) > nκ for n > 0. Using the fact that Λ′(n) = κ , it suffices to show that

Λ′′(n) < 0 and Λ′(n)n
Λ(n)

< 1 for n > 0. Similarly to Lemma 16, using (34) yields

Λ(n) = −
∫ θ̄

θ

nP ′
0(n(1−G(θ)))sθg(θ)dθ

and, using Leibniz’s integral rule, plus the envelope theorem, yields

Λ′(n) =

∫ θ̄

θ

−P ′
0(n(1−G(θ)))sθg(θ)dθ −

∫ θ̄

θ

n(1−G(θ))P ′′
0 (n(1−G(θ)))sθg(θ)dθ.
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Therefore, letting x = n(1−G(θ)), we have

Λ′(n)n

Λ(n)
= 1 +

∫ θ̄
θ
xP ′′

0 (x)sθg(θ)dθ∫ θ̄
θ
P ′
0(x)sθg(θ)dθ

.

Because P ′′
0 (x) > 0 and P ′

0(x) < 0 by Lemma 9, we have Λ′(n)n
Λ(n)

< 1 for n > 0.

Finally, Φ(n) = Λ(n) − nκ for n > 0, so Φ′(n) = Λ′(n) − κ and Φ′′(n) = Λ′′(n).

Since Φ′′(n) < 0 from the proof of Lemma 16, we have Λ′′(n) < 0. It follows that,

for any n ∈ N(κ), we have n > 0. Since we assume κ > 0, this implies n ∈ R+\{0}.
Since n is unique by Lemma 16, there is a function n : R+\{0} → R+\{0} such that

n(κ) solves Λ′(n) = κ. Clearly, n is strictly decreasing in κ since Λ′′(n) < 0. ■

Proof of Corollary 1

In general, the equilibrium quantities traded are below the first-best for all θ ∈
[θ, θ̄). If θ = θ̄, then qθ = q∗θ because 1− G̃(θ;n) = 0. The equilibrium n satisfies

m′(n)s̃(n; {qθ}θ∈Θ) +m(n)s̃′(n; {qθ}θ∈Θ) = κ

and the first-best n∗ satisfies

m′(n∗)s̃(n∗; {q∗θ}θ∈Θ) +m(n∗)s̃′(n∗; {q∗θ}θ∈Θ) = κ.

We know from above that q∗θ > qθ for any θ ∈ [θ, θ̄), but we cannot infer anything

about whether there is under-entry (n < n∗), over-entry (n > n∗), or first-best entry

(n = n∗). We can find examples of equilibria for each of these three possibilities. ■

Proof of Propositions 4 and 11

We must show that δG̃(θ;n) is decreasing in n where

δG̃(θ;n) = ερ(θb(n);n)
IG̃(θ;n)

θ
.

Using expression (80) gives us
IG̃(θ;n)

θ
= 1

ερ(θ;n)
, so we obtain

δG̃(θ;n) =
ερ(θb(n);n)

ερ(θ;n)
.
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Next, expression (81) delivers

δG̃(θ;n) =
hG(θb(n))

hG(θ)

ηm(x(θb(n);n))

ηm(x(θ;n))

where x(θ;n) = n(1−G(θ)). Differentiating with respect to n, we have

∂

∂n
δG̃(θ;n) =

d

dn

(
hG(θb(n))

hG(θ)

)
ηm(x(θb(n);n))

ηm(x(θ;n))
+
hG(θb(n))

hG(θ)

d

dn

(
ηm(x(θb(n);n))

ηm(x(θ;n))

)
.

Since h′G(θ) > 0 by Assumption 4 and θ′b(n) < 0 by Lemma 7, the first term in above

derivative is negative. The second term has the same sign as

d

dn

ηm(x(θb(n);n))

ηm(x(θ;n))
=
η′m(xb)

d
dn
x(θb(n);n)

ηm(x)
−
ηm(xb)η

′
m(x)

d
dn
x(θ;n)

ηm(x)2

where x denotes x(θ;n) and xb denotes x(θb(n);n). So
∂
∂n
δG̃(θ;n) < 0 provided that

η′m(xb)ηm(x)
d

dn
x(θb(n);n)− ηm(xb)η

′
m(x)

d

dn
x(θ;n) < 0.

Now, we have d
dn
x(θ;n) = −ng(θ), so we require the following:

η′m(xb)ηm(x)
d

dn
x(θb(n);n) + ηm(xb)η

′
m(x)ng(θ) < 0.

Given that η′m < 0 by Lemma 1, it suffices to show that d
dn
x(θb(n);n) ≥ 0. Given that

x(θb(n);n) = n(1−G(θb(n))), differentiating yields

d

dn
x(θb(n);n) = −ng(θb(n))θ′b(n) + 1−G(θb(n)).

We have θ′b(n) < 0 by Lemma 7 and thus d
dn
x(θb(n);n) > 0, so ∂

∂n
δG̃(θ;n) < 0. ■

Proof of Corollaries 2 and 4

By definition of the quantity distortion, we have

(77) θ[1− δG̃(θ;n)] ≡
c′(qθ)

u′(qθ)
.

By assumption, u′′(q) < 0 and c′′(q) ≥ 0, so the right-hand side is increasing in qθ.

The left-hand side is increasing in n because ∂
∂n
δG̃(θ;n) < 0, so the right-hand side

must also be increasing in n. Therefore, we must have qθ(n) increasing in n. ■
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Proof of Propositions 5 and 12

Differentiating δ̃(n) using Leibniz’ integral formula yields

δ̃′(n) =

∫ θ̄

θ

g̃(θ;n)
∂

∂n
δG̃(θ;n)dθ +

∫ θ̄

θ

δG̃(θ;n)
∂

∂n
g̃(θ;n)dθ.

Given that ∂
∂n
δG̃(θ;n) < 0 by Propositions 4 and 11, it suffices to show that

(78)

∫ θ̄

θ

δG̃(θ;n)
∂

∂n
g̃(θ;n)dθ < 0.

Holding n fixed, define δn(θ) ≡ δG̃(θ;n) where δ′n(θ) < 0 because ∂
∂θ
δG̃(θ;n) < 0.

Rearranging and applying Leibniz’ integral rule, inequality (78) is equivalent to

(79)
∂

∂n

∫ θ̄

θ

(−δn(θ)) dG̃(θ;n) > 0.

By Part 5 of Lemma 2, we know that for any f : Θ → R+ such that f ′ > 0, we have

f̃ ′(n) > 0 where f̃(n) ≡
∫ θ̄
θ
f(θ)dG̃(θ;n). Letting f(θ) = −δn(θ), it is clear that f ′ > 0

because δ′n(θ) < 0. Thus inequality (79) follows and we have δ̃′(n) < 0. ■

Proof of Corollaries 3 and 5

Corollaries 3 and 5 follow from Corollaries 2 and 4 by applying Leibniz’ integral

rule and then using Part 5 of Lemma 2, using reasoning directly analogous to that

used in the above proof of Propositions 5 and 12. ■

Proof of Proposition 6

By definition, T (q) = t(θ(q)), so we have T ′(q) = t′(θ)θ′(q), or t′(θ) = T ′(q)q′(θ). At

the same time, the payment tθ = θu(qθ)−vθ, so t′(θ) = u(qθ)+θu
′(qθ)q

′(θ)−v′(θ). We

know that v′(θ) = u(qθ), so we have t′(θ) = θu′(qθ)q
′(θ). Therefore, T ′(q) = θ(q)u′(q)

and p(q) = θ(q)u′(q). In terms of the quantity distortion, (77) implies

θu′(qθ) =
c′(qθ)

1− δG̃(θ;n)
.

So, we conclude that

T ′(q) =
c′(q)

1− δG̃(θ(q);n)
.
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Differentiating T ′(q) with respect to q, we obtain

T ′′(q) =
c′′(q)

1− δG̃(θ(q);n)
+

c′(q) ∂
∂θ
δG̃(θ(q);n)

[1− δG̃(θ(q);n)]
2q′(θ)

.

The first term in T ′′(q) is weakly negative because we assume c′′(q) ≤ 0. For the second

term, we know that q′(θ) > 0, so the denominator is positive, plus the numerator is

negative because ∂
∂θ
δG̃(θ;n) < 0. Therefore, T ′′(q) < 0 or equivalently p′(q) < 0. ■

Proof of Proposition 7

By assumption, we have c(q) = cq, and therefore

T ′′(q) =
c ∂
∂θ
δG̃(θ(q);n)

[1− δG̃(θ(q);n)]
2q′(θ)

and we have

T ′(q) =
c

1− δG̃(θ(q);n)
.

Therefore, we obtain
T ′′(q)q

T ′(q)
=

∂
∂θ
δG̃(θ(q);n)q

[1− δG̃(θ(q);n)]q
′(θ)

.

Also, if c(q) = cq we have

q′(θ) =
−[1− ϕ′(θ)]u′(qθ)

[θ − ϕ(θ;n)]u′′(qθ)

where θδG̃(θ;n) = ϕ(θ;n), so we have

q′(θ) =
−[1 + J(n; θ)]u′(qθ)

θu′′(qθ)

where we define

J(n; θ) ≡
−θ ∂

∂θ
δG̃(θ;n)

1− δG̃(θ;n)
.

By assumption, u(q) = q1−b/(1− b), which implies −u′′(q)q/u′(q) = b and

q′(θ) =
qa(1 + J(n; θ))

ab

and
−T ′′(q)q

T ′(q)
=

b

1/J(n; θ) + 1
.
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Therefore, −T ′′(q)q
T ′(q)

is decreasing in n if and only if ∂J(n;θ)
∂n

< 0.

Differentiating, we have

∂δG̃(θ;n)

∂θ
= ερ(θb(n);n)

d

dθ

(
1− G̃(θ;n)

θg̃(θ;n)

)

=
−ερ(θb(n);n)

θ

[
1 +

(
1 +

g̃′(θ;n)θ

g̃(θ;n)

)(
1− G̃(θ;n)

θg̃(θ;n)

)]

= −1

θ

[
ερ(θb(n);n) +

(
1 +

g̃′(θ;n)θ

g̃(θ;n)

)
δG̃(θ;n)

]
.

Therefore, we have

J(n; θ) =
−θ ∂

∂θ
δG̃(θ;n)

1− δG̃(θ;n)
=
ερ(θb(n);n) +

(
1 + g̃′(θ;n)θ

g̃(θ;n)

)
δG̃(θ;n)

1− δG̃(θ;n)
.

By Propositions 4 and 11, we know that δG̃(θ;n) is decreasing in n, and ερ(θb(n);n) is

decreasing in n by Lemma 8. To ensure that we have ∂J(n;θ)
∂n

< 0, it therefore suffices

to have g̃′(θ;n)θ
g̃(θ;n)

≥ −1. Starting with expression (38), we have

g̃(θ;n) =
n

m(n)
g(θ)m′(x)

where x = n(1−G(θ)), and therefore

g̃′(θ;n) =
n

m(n)
[g′(θ)m′(x)− ng(θ)2m′′(x)].

So we have

g̃′(θ;n)θ

g̃(θ;n)
=

[g′(θ)m′(x)− ng(θ)2m′′(x)] θ

g(θ)m′(x)

=
g′(θ)θ

g(θ)
− ng(θ)m′′(x)θ

m′(x)

=
g′(θ)θ

g(θ)
+

(
g(θ)θ

1−G(θ)

)(
−m′′(x)x

m′(x)

)
>

g′(θ)θ

g(θ)

where the last step follows from the fact that −m′′(x)x
m′(x)

> 0. Therefore, to ensure
∂J(n;θ)
∂n

< 0, it suffices for the density g to satisfy the condition g′(θ)θ
g(θ)

≥ −1. ■

50



Proof of Lemma 7

Consider the zero-profit condition (19), which can be written as∫ θ̄

θ

(−c(qθ) + tθ)
m(n)g̃(θ;n)

n
dθ = κ.

Using the fact that qθ = tθ = 0 for all θ ≤ θb(n), we can write∫ θ̄

θb(n)

πθ
m(n)g̃(θ;n)

n
dθ = κ

where πθ ≡ −c(qθ) + tθ. Using Leibniz’ integral rule to differentiate with regard to n,∫ θ̄

θb(n)

d

dn

(
πθ
m(n)g̃(θ;n)

n

)
dθ − lim

θ→θb
πθ
m(n)g̃(θ(n);n)

n
θ′b(n) = 0.

Rearranging, and using the envelope theorem, θ′b(n) has the same sign as d
dn

(
m(n)g̃(θ;n)

n

)
.

Using expression (38) for g̃(θ;n), we have

d

dn

(
m(n)g̃(θ;n)

n

)
=

d

dn
[g(θ)m′(x(θ;n))]

where x(θ;n) = n(1−G(θ)) and

d

dn
[g(θ)m′(x(θ;n))] = g(θ)m′′(x(θ;n))(1−G(θ)).

Therefore, since m′′ < 0 by Lemma 1, d
dn

(
m(n)g̃(θ;n)

n

)
< 0 for θ < θ̄ and θ′b(n) < 0

provided that we have θb(n) > θ, which is a lower bound for the value of θb(n). ■

Proof of Proposition 10

To prove that market coverage µ(θb(n);n) is increasing in n, recall that

µ(θb(n);n) = m(n)(1− G̃(θb(n);n)).

Starting with expression (3) for G̃(θ;n), we have

1− G̃(θ;n) =
1− P0(n(1−G(θ)))

m(n)
.
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We can therefore rewrite µ(θb(n);n) as follows:

µ(θb(n);n) = 1− P0(n(1−G(θb(n))).

It follows from Lemma 7 that θ′b(n) < 0. Therefore, G(θb(n)) is decreasing in n and

n(1 − G(θb(n))) is increasing in n. We know that P ′
0(x) < 0 from Lemma 9, so

P0(n(1−G(θb(n))) is decreasing in n. Thus µ(θb(n);n) is increasing in n. ■

Proof of Lemma 8

Differentiating ερ(θb(n);n) with respect to n,

d

dn
ερ(θb(n);n) = θ′b(n)

∂

∂θ
ερ(θb(n);n) +

∂

∂n
ερ(θb(n);n).

By definition of ερ(θ;n), we have

(80) ερ(θ;n) =
θg̃(θ;n)

1− G̃(θ;n)
=

θ

IG̃(θ;n)
.

Using expression (40) gives us

(81) ερ(θ;n) = θηm(x(θ;n))hG(θ)

where x(θ;n) = n(1−G(θ)). Thus, we have ∂
∂n
ερ(θ;n) < 0 because η′m < 0 by Lemma

1 and ∂
∂n
x(θ;n) > 0. We also know that θ′b(n) < 0 from Lemma 7, so it suffices to

show that ∂
∂θ
ερ(θ;n) > 0. Differentiating with respect to θ, we have

∂

∂θ
ηm(x(θ;n))hG(θ) = −η′m(x(θ;n))ng(θ)hG(θ) + ηm(x)h

′
G(θ) > 0

because η′m < 0 by Lemma 1 and h′G(θ) > 0 by Assumption 4. Therefore, we have
∂
∂θ
ερ(θ;n) > 0 and thus we have proven that d

dn
ερ(θb(n);n) < 0, as required. ■
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