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EXTREME VALUE THEORY WITH HETEROGENEOUS AGENTS

SEPHORAH MANGIN
Research School of Economics, Australian National University

Extreme value processes feature in any economic model in which agents receive a number
of draws from some distribution and we examine the behavior of the maximum in the limit
as the number of draws becomes large. This paper asks: Do the average outcomes of such
processes change when different agents receive a different number of draws? To answer this,
we allow the number of draws an agent receives from the underlying distribution (e.g. of
productivities, ideas, or utility shocks) to be given by a search technology, which reflects
heterogeneity in the expected number of draws across different types of agents. We derive
a new class of extreme value distributions that generalize the three standard distributions
(Fréchet, Gumbel, Weibull) by incorporating heterogeneity across agent types. We generalize
a result from Gabaix, Laibson, Li, Li, Resnick, and de Vries (2016) regarding extreme value
outcomes and consider applications to aggregate productivity, markups, and social networks.

KEYWORDS: Extreme value distribution, Fréchet distribution, Gumbel distribution,
Mixed Poisson distribution, Heterogeneous agents, Productivity dispersion, Markups.

1. INTRODUCTION

EXTREME VALUE PROCESSES are widespread in economics. There is a large literature in
which important economic outcomes such as output, productivity, growth, or markups – either
at the firm level or the aggregate level – are determined by an extreme value process. Generally,
such extreme value processes involve economic agents of some kind (e.g. firms, researchers,
or consumers) receiving a number of draws from an underlying distribution of values (e.g.
productivities, ideas, or utility shocks). We are typically interested in studying the distribution
of the maximum in the limit as the number of draws becomes large.

It is well known that the limiting distribution of the (normalized) maximum must be one of
three standard extreme value distributions: Fréchet, Gumbel, or Weibull. For example, if the
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underlying distribution is Pareto, we obtain the Fréchet extreme value distribution.1 Variations
of the Pareto-Fréchet extreme value process are used in a large class of models in macroe-
conomics, growth, and trade, including papers by Kortum (1997), Eaton and Kortum (1999),
Jones (2005), Lucas (2009), Mangin (2017), Buera and Lucas (2018), Oberfield (2018), Buera
and Oberfield (2020), and Jones (2023).

In this paper, we provide a framework that generalizes such extreme value processes. Instead
of assuming that all agents receive the same number of draws, we allow different agents to
receive a different number of draws. We then examine the distribution of the (normalized)
maximum in the limit as the average number of draws across agents becomes large.

To do this, we assume the number of draws an agent receives is itself a random variable
that is given by a discrete probability distribution called the search technology. The search
technology has two possible interpretations. First, it can be interpreted as reflecting randomness
due to search or other frictions. Second, it can be interpreted as resulting from underlying
heterogeneity across different types of agents. In this way, the results in this paper enable us to
do extreme value theory in environments featuring heterogeneous agents.

The class of search technologies we consider is the class of mixed Poisson distributions.
This class includes a wide range of discrete distributions, such as the negative binomial family,
which nests both the geometric distribution and the Poisson distribution. Mixed Poisson dis-
tributions are particularly useful for modelling heterogeneity across different types of agents.
A mixed Poisson random variable is a Poisson random variable where the Poisson parameter
is itself a random variable that is distributed according to a “mixing distribution”. For some
applications, the distribution of the Poisson parameter can be interpreted as the distribution of
types, where the “type” of an agent determines their expected number of draws.

The class of mixed Poisson distributions was introduced into economics by Hausman et al.
(1984) as a way to model count data featuring overdispersion. In particular, the authors use
this class to model heterogeneity across firms in R&D intensity.2 In the search literature, mixed
Poisson search technologies (or “meeting technologies”) were first introduced by Cai et al.
(2025), which microfounds this class of search technologies and uses it to model heterogeneity
across locations in a spatial search model. Cai et al. (2025) proves that any search technology
in an existing class of search technologies called “invariant” in Lester et al. (2015) can be
represented as a mixed Poisson distribution. Therefore, all of our results apply to the class of
invariant search technologies.

This paper provides two main results. First, we provide a general result regarding the ex-
treme value distribution when the number of draws from the underlying distribution is ran-
dom. Second, we provide a general result regarding the outcomes of extreme value processes,
e.g. functions of maxima, when the number of draws is random. Our first main result extends
a standard result in extreme value theory, the well-known Fisher-Tippett-Gnedenko extreme
value theorem. Our second main result generalizes a result in Gabaix et al. (2016) regarding
extreme value outcomes when the number of draws is fixed rather than random. We provide a
formal proof of this general result which holds for any mixed Poisson search technology. We
also provide a simple heuristic proof that uses an existing result in Mangin (2024) regarding
extreme outcomes for the Poisson special case.

Intuitively, we might expect that, in the limit as the average number of draws becomes large,
the effect of the search technology would disappear and the distribution of the maximum would

1The Pareto distribution is all-pervasive in economics. See Gabaix (1999, 2009, 2016), Luttmer (2007), Benhabib
and Bisin (2018), Jones and Kim (2018), Martellini and Menzio (2020), and Beare and Toda (2022).

2More recently, mixed Poisson distributions have been used by Campbell et al. (2024) to model heterogeneity in a
random network.
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eventually behave in a standard way. Surprisingly, however, we find that the search technology
still matters because there may be asymptotic dispersion in the number of draws even in this
limit, which leads to greater dispersion in the distribution of the maximum. The search tech-
nology can therefore affect the asymptotic behavior of the maximum, or any functions of the
maximum, and it may thereby affect important economic outcomes such as aggregate produc-
tivity or markups.

We find that the extreme value distribution need not be any of the three standard types
(Fréchet, Gumbel, and Weibull). The form of the extreme value distribution depends not only
on the underlying distribution and its tail index, but also on the search technology. For example,
if the distribution of productivities is Pareto, the extreme value distribution is not necessarily
Fréchet. We also find that the expected value of the maximum behaves asymptotically in a stan-
dard way except that it is scaled by a new term capturing the effect of the search technology.
This scaling factor depends on both the tail index of the underlying distribution and on the
search technology.

The effect of heterogeneity in the number of draws on extreme value outcomes is driven
by the asymptotic dispersion of the search technology. The asymptotic dispersion can be in-
terpreted as the residual dispersion that remains in the limit as the expected number of draws
becomes large. Restricting attention to the mixed Poisson class of search technologies delivers
significant tractability because the asymptotic dispersion of the search technology is simply
equal to the dispersion of the type distribution. We find that extreme value outcomes may be
either increasing or decreasing in a mean-preserving spread of the distribution of types. That
is, greater asymptotic dispersion of the search technology – through greater dispersion in the
expected number of draws across different types of agents – can either increase or decrease
extreme value outcomes.

Our results show that the Poisson search technology is a unique special case where the search
technology has no effect on extreme outcomes. Within the mixed Poisson class we consider,
the extreme value distribution takes the standard form if and only if the search technology is
Poisson. This is because the asymptotic dispersion of the Poisson search technology is zero,
which explains why it delivers the standard extreme value results in the existing literature. The
fact that the Poisson distribution can deliver the standard results in extreme value theory was
first shown by Kortum (1997) in economics.3 Variants of this Poisson approach were later used
in Jones (2005), Mangin (2017), Mangin and Sedláček (2018), Oberfield (2018), Boehm and
Oberfield (2020), Boehm and Oberfield (2023), and Jones (2023).

We consider an application of our results to aggregate productivity and the cross-sectional
distribution of firm productivity. Firms are heterogeneous with respect to R&D intensity. Higher
(lower) R&D intensity results in more (fewer) new ideas on average. We find that greater het-
erogeneity in R&D intensity decreases aggregate productivity if the underlying distribution
is fat-tailed. Intuitively, this is because there are diminishing marginal returns to the number
of ideas at a single firm. An additional idea is less valuable to a firm that already has a large
stock of ideas, so aggregate productivity is maximized when there is less heterogeneity in R&D
intensity across firms.

Next, we apply our results to the behavior of markups in a discrete choice model with ran-
dom utility shocks. In this application, the search technology reflects the fact that consumers
are heterogeneous with respect to their search intensities. Some consumers search more (less)
intensely and find more (fewer) firms on average. We find that greater heterogeneity in con-
sumers’ search intensity decreases the average markup across consumers if the tail index of the

3The basic idea was known in both statistics and in the “Peaks Over Threshold” model developed by hydrologists,
which models the flood arrival rate as Poisson and the distribution of flood magnitudes as generalized Pareto and
obtains an extreme value distribution. See Smith (1984).
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distribution of utility shocks is positive (i.e. fat-tailed distributions) but increases the average
markup if it is negative (e.g. uniform distribution). As we discuss, this is because the expected
markup for a single consumer is asymptotically concave (convex) in the number of firms the
consumer meets if the tail index is positive (negative), as shown in Gabaix et al. (2016).

Finally, we present an application to peer effects in a random social network of students. In
this application, the search technology is the degree distribution of the social network and re-
flects the fact that friends are heterogeneous with respect to their popularity, i.e. their expected
number of friends. We consider the effect of the degree distribution on the average student out-
come in the limit as the network becomes dense, i.e. as the average number of friends becomes
large. We find that greater heterogeneity in student popularity decreases the average outcome
across students. Intuitively, this is because there are diminishing marginal returns to the num-
ber of friends of an individual student. An additional friend is more valuable to a less popular
student compared to a more popular student, so the average outcome is maximized when the
heterogeneity in popularity across students is lower.

Proofs of all results and some additional material can be found in the Appendix.

2. PRELIMINARIES

Suppose that agents receive a number of draws from some distribution of values. We assume
that the distribution of values has cdf G and it satisfies Assumption 1. We call the distribution
G the underlying distribution. Depending on the specific application, it may be a distribution
of productivities, ideas, costs, valuations, or utility shocks.

ASSUMPTION 1: The distribution of values x has a twice-differentiable cdf G with pdf g =
G′ > 0, and support [x,x]⊆R where x,x ∈R∪ {±∞}, and

∫ x

x
|xg(x)|dx is finite.4

We assume the number of draws is itself a random variable that has a discrete probability
distribution with probability mass function Pn and support N. For any n ∈ N, the probability
there are n draws is given by Pn(θ) where θ ∈ R+ is the average number of draws across all
agents. We denote by N(θ) the random variable with distribution Pn and mean θ. We refer to
the distribution Pn as the search technology.

2.1. Mixed Poisson Class of Search Technologies

We restrict attention to search technologies that can be represented by mixed Poisson dis-
tributions. A mixed Poisson random variable is a Poisson random variable where the Poisson
parameter is itself a random variable. In particular, we assume that the Poisson parameter is
equal to a constant θ ∈R+ multiplied by a random variable X , which is given by a continuous
distribution F called the “mixing distribution”, which we assume has a finite mean.5

We set EF [X] = 1 to ensure the average number of draws across agents is θ.6

4More precisely, the support of G is an interval that may be either [x,x], (x,x], [x,x), or (x,x).
5We focus on continuous mixing distributions F here, but some of our results could potentially be extended to

discrete mixing distributions F . In particular, if there are K ∈ N types (τ1, τ2, . . . , τK), then (1) is replaced by

Pn(θ) =
∑K

j=1 ωj
(θτj)

ne
−θτj

n!
where ωj ≡ Pr(X = τj). We leave this as an extension for future work.

6The assumption that EF [X] = 1 is not essential for our results. All of our main results still hold if EF [X] = µ ∈
R+, but in this case the mean of the distribution Pn is θµ.
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ASSUMPTION 2—Mixed Poisson Search Technology: The search technology Pn is mixed
Poisson with mean θ ∈R+. That is, for all n ∈N, we have

Pn(θ) =

∫ ∞

0

(θτ)ne−θτ

n!
dF (τ) (1)

for a continuous distribution with cdf F and support [τ , τ ]⊆R+ where τ ∈R+ ∪ {+∞}.7

There are two possible interpretations of the mixed Poisson search technology.
First, the search technology Pn (e.g. geometric or negative binomial) may be the primitive

and it could simply represent randomness in the number of draws received by different agents
due to search or other frictions. In this case, the mixed Poisson representation is simply a
convenient way to describe the search technology that is mathematically equivalent, but the
mixing distribution F has no specific interpretation.

Second, the distribution F (e.g. exponential or gamma) may be the primitive and it could
represent heterogeneity across different types of agents. For this reason, we refer to F through-
out as the distribution of types. For agents of type τ , the number of draws they receive is a
Poisson random variable with mean τθ. Higher (lower) types receive more (fewer) draws on
average, but the average number of draws across all agents is θ.

For example, suppose there is a large number of researchers who are heterogeneous with
respect to their R&D intensity, which governs the rate of finding new ideas. For any given level
of R&D intensity τ , the distribution of the number of ideas a researcher gets is Poisson with
mean τθ for some constant θ. This means that a higher R&D intensity leads to a higher expected
number of ideas, but the realized number of ideas is still random. Now assume the distribution
of R&D intensities τ across researchers is given by a cdf F with mean EF [X] = 1. The search
technology (i.e. the distribution of the number of ideas across all researchers in the economy)
is mixed Poisson with mean θ and satisfies Assumption 2. Of course, if all researchers have the
same R&D intensity τ = 1, we recover the standard Poisson search technology.

2.2. Useful Properties of Mixed Poisson Distributions

Mixed Poisson distributions have some useful properties that are shared with the Poisson dis-
tribution. One useful property is that the probability generating function of Pn can be expressed
in terms of the function P0 :R+ → [0,1] where P0(θ) is the probability of receiving zero draws
when the average number of draws is θ.8 This means the function P0 captures everything we
need to know about the search technology.9

LEMMA 1: If the search technology Pn is mixed Poisson with mean θ, then for y ∈ [0,1],

EP [y
N(θ)] =

∞∑
n=0

Pn(θ)y
n = P0(θ(1− y)).

7More precisely, the support of F is an interval that may be either [τ , τ ] if τ <∞ or [τ , τ) if τ =∞.
8It is worth pointing out that (1) implies P0(z) =MF (−z) where MF is the moment generating function of the

distribution F . This means that in applications where we start with a type distribution F , the function P0 can be
directly calculated if we know the moment generating function of F . Note that since z > 0, the moment-generating
function need only be defined on the negative reals.

9The property in Lemma 1 is a property of the class of meeting technologies called invariant in Lester et al.
(2015). In Appendix E, we describe an equivalence between the class of mixed Poisson distributions and the class of
search technologies called invariant in Lester et al. (2015). This equivalence result is established in Cai et al. (2025).
Therefore, all of our results apply to any search technology that is “invariant” as defined in Lester et al. (2015). Note
that invariance also implies non-rivalry, as defined in Eeckhout and Kircher (2010).
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PROOF: See Appendix A. Q.E.D.

Another useful property of this class is that the sum of two mixed Poisson random variables
is itself a mixed Poisson random variable.10 Under certain conditions, the distribution of the
sum is a search technology of the same kind. For example, a finite sum of negative binomial
random variables is itself negative binomial under certain conditions.11

In Appendix F, we show how the mixed Poisson assumption can be used in dynamic envi-
ronments where agents can accumulate draws over time.

2.3. Asymptotic Dispersion of Search Technology

For any mixed Poisson distribution with EF [X] = 1, the squared coefficient of variation is a
measure of dispersion given by

cv2
P (θ) =

1

θ
+ cv2

F (2)

where cv2
F is the squared coefficient of variation of the mixing distribution F .12 This measure

of dispersion has two components: the first reflects the dispersion of the Poisson distribution
and the second captures the dispersion of the mixing distribution.

We are interested in what happens when the expected number of draws becomes large. A
key object of interest will be the asymptotic dispersion of the search technology, which we
define as cv2

P ≡ limθ→∞ cv2
P (θ). This captures the “residual” dispersion that remains in the

limit as the expected number of draws becomes large. It is clear from expression (2) that we
have limθ→∞ cv2

P (θ) = cv2
F . That is, the asymptotic dispersion of the search technology Pn is

equal to the dispersion of the type distribution F .

LEMMA 2—Asymptotic Dispersion: If the search technology Pn is mixed Poisson with
mean θ and EF [X] = 1, the asymptotic dispersion cv2

P of the search technology is equal to
the dispersion cv2

F of the type distribution F . That is,

cv2
P = lim

θ→∞
cv2

P (θ) = cv2
F .

For the Poisson distribution, there is no asymptotic dispersion because cv2
F = 0. In this spe-

cial case, the distribution F is degenerate and the random variable N(θ) behaves asymptoti-
cally like a constant (i.e. as though Pn is asymptotically degenerate). However, if the search
technology Pn is not Poisson – or, equivalently, the distribution F is non-degenerate – then
N(θ) exhibits asymptotic dispersion. We will later see that asymptotic dispersion, i.e. the dis-
persion of the type distribution F , will be important for understanding the impact of the search
technology on extreme outcomes.

10In general, if the mixing distributions are F1 and F2, the mean of the sum is the sum of the two means and the
mixing distribution of the sum is the convolution of the two distributions F1 and F2.

11For example, the sum of two negative binomial random variables with parameters r1, r2 and means θ1, θ2 is
itself negative binomial with parameter r1 + r2 and mean θ1 + θ2 if θ1/θ2 = r1/r2. This includes the special case
where the two negative binomial random variables are the same, i.e. r1 = r2 and θ1 = θ2. See Johnson et al. (2005).

12The squared coefficient of variation is equal to the variance divided by the squared mean. For any mixed Poisson
distribution with EF [X] = 1, the variance is σ2

P (θ) = θ+σ2
F θ2 where σ2

F is the variance of the mixing distribution
F . See Karlis and Xekalaki (2005) for further details.



EXTREME VALUE THEORY WITH HETEROGENEOUS AGENTS 7

2.4. Distribution of the Maximum

Importantly, Lemma 1 enables us to derive a simple expression for the distribution of the
maximum when the number of draws is a mixed Poisson random variable. This result may
be independently useful in cases where the exact distribution for a finite number of draws is
required, instead of the extreme value distribution that arises in the limit as the number of draws
becomes large – which we derive in Section 4.

Define a random variable for the maximum of N(θ) draws, where N(θ) is a mixed Poisson
random variable, by MN(θ) ≡ max{X1, . . . ,XN(θ)}.13 Define the cdf of the distribution of
the maximum by HP (x;θ) ≡ Pr(MN(θ) ≤ x). It is well known that the distribution of the
maximum of n draws from G has cdf G(x)n. Weighting the conditional distribution G(x)n

(i.e. conditional on n draws) by the probability Pn(θ) of realizing n draws,

HP (x;θ) =
∞∑

n=0

Pn(θ)G(x)n.

We can now apply Lemma 1, setting y =G(x), to derive the following result.

LEMMA 3—Distribution of the Maximum: If the search technology Pn is mixed Poisson
with mean θ, the distribution of the maximum of N(θ) draws from a distribution G is

HP (x;θ) = P0(θ(1−G(x))). (3)

We illustrate by providing some examples of mixed Poisson search technologies.

2.5. Examples

In this section, we present some important examples of mixed Poisson search technologies.
Table II in Appendix E provides some additional examples.14

EXAMPLE 2.1—Poisson: If Pn is a Poisson search technology, then

Pn(θ) =
e−θθn

n!

and the function P0 is

P0(z) = e−z.

Therefore, Lemma 3 tells us that the distribution of the maximum is

HP (x;θ) = e−θ(1−G(x)).

We can represent the search technology Pn using (1) where the mixing distribution F is degen-
erate and has mean one. The asymptotic dispersion of Pn is cv2

P = cv2
F = 0.

EXAMPLE 2.2—Negative Binomial: If Pn is a negative binomial search technology,

Pn(θ) =

(
n+ r− 1

n

)(
r

r+ θ

)r (
θ

r+ θ

)n

13To simplify, we assume that MN(θ) = x in the case where there are zero draws.
14See also Karlis and Xekalaki (2005) for a detailed list of mixed Poisson distributions.
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where r ∈N \ {0}, and the function P0 is

P0(z) =

(
r

r+ z

)r

. (4)

Therefore, by Lemma 3, the distribution of the maximum is

HP (x;θ) =

(
r

r+ θ(1−G(x))

)r

.

We can represent the negative binomial search technology Pn using (1) where the mixing
distribution F is the gamma distribution with support τ ∈ [0,∞) and cdf F (τ) = γ(r,rτ)

Γ(r)
where

EF [X] = 1. The asymptotic dispersion of Pn is cv2
P = cv2

F = 1/r.
Intuitively, we can interpret the negative binomial random variable N(θ) as counting the

number n of successes before r failures, where the probability of success is given by θ/(r+ θ)
and the expected number of successes before r failures is θ. In the limit as r→∞, the random
variable N(θ) counts the total number of successes as the probability of success becomes small,
i.e. N(θ) is a Poisson random variable. It is easy to verify directly from the P0 function (4) that,
in the limit as r→∞, we obtain the Poisson search technology.15

EXAMPLE 2.3—Geometric: If Pn is a geometric search technology, then

Pn(θ) =
1

1+ θ

(
θ

1 + θ

)n

and the function P0 is

P0(z) =
1

1+ z
.

Therefore, by Lemma 3, the distribution of the maximum is

HP (x;θ) =
1

1+ θ(1−G(x))
.

The geometric search technology is a special case of the negative binomial family where r = 1.
We can represent the search technology Pn using (1) where the mixing distribution F is the
exponential distribution with support τ ∈ [0,∞) and cdf F (τ) = 1− e−τ where EF [X] = 1.
The asymptotic dispersion of Pn is cv2

P = cv2
F = 1.

Figure 1 depicts the negative binomial family of search technologies for large θ. In the limit
as r→∞ and Pn is Poisson, the random variable N(θ) behaves asymptotically like a constant
because cv2

F = 1/r → 0. However, if the search technology Pn is not Poisson, then N(θ)
exhibits asymptotic dispersion. We will see that this asymptotic dispersion matters for both
extreme value outcomes and the extreme value distribution.

15Note that limr→∞
(
1 + z

r

)r
= ez , so limr→∞ P0(z) = limr→∞

(
r

r+z

)r

= limr→∞
(
1 + z

r

)−r
= e−z.
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FIGURE 1.—Search Technologies in the Negative Binomial Family (θ = 100).

3. PREVIEW: PARETO EXAMPLE

In this section, we preview some of our results by providing a simple heuristic derivation
of the extreme value distribution for a specific example where the underlying distribution is
Pareto. This enables us to see immediately why the search technology matters for determining
the shape of the extreme value distribution.

We first derive the standard result for a fixed number of draws, and then show how this
generalizes to our environment where the number of draws is a random variable. Our results
are closely connected to a result in Jones (2023) regarding the asymptotic behavior of the
maximum. We provide details of this connection in Appendix G.

3.1. Fixed Number of Draws

Let X1, . . . ,Xn be i.i.d. random variables with distribution G where n ≥ 1. Define a ran-
dom variable for the maximum, Mn ≡max{X1, . . . ,Xn}. It is well known that the cdf of the
distribution of the maximum is given by H(x;n)≡ Pr(Mn ≤ x) =G(x)n.

Suppose the underlying distribution is Pareto, i.e. G(x) = 1− x−1/γ . Given that Mn →∞
as n→∞, we need to normalize the random variable Mn. In this example, we can “guess” and
verify that the right normalization is to define a new random variable Zn ≡Mn/n

γ .
The fact that Pr(Mn ≤ x) =G(x)n gives us

Pr

(
Mn ≤

( y
n

)−γ
)
=
(
1− y

n

)n

.

As n→∞, the right-hand side converges to e−y , so in the limit as n→∞, we have

Pr(Zn ≤ y−γ) = e−y.
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Letting x= y−γ , we have Pr(Zn ≤ x) = e−x−1/γ
in the limit as n→∞. Therefore, the distri-

bution of the normalized maximum is given by the following extreme value distribution:

Hγ(x) = e−x−1/γ

. (5)

As expected, the Pareto distribution delivers a Fréchet extreme value distribution.

3.2. Random Number of Draws

Consider the same environment except for one difference: the number of draws is a random
variable N(θ) with mean θ and distribution Pn, which we assume is mixed Poisson. Define a
random variable for the maximum, MN(θ) ≡max{X1, . . . ,XN(θ)}. From expression (3), we
have HP (x;θ)≡ Pr(MN(θ) ≤ x) = P0(θ(1−G(x))).

Suppose the underlying distribution is Pareto, i.e. G(x) = 1−x−1/γ . Given that MN(θ) →∞
as θ→∞, we need to normalize the random variable MN(θ). We can again “guess” and verify
that the right normalization is to define a new random variable ZN(θ) ≡MN(θ)/θ

γ . The fact
that Pr(MN(θ) ≤ x) = P0(θ(1−G(x))) by Lemma 3 gives us16

Pr(ZN(θ) ≤ y−γ) = P0(y).

Again letting x = y−γ , we have Pr(ZN(θ) ≤ x) = P0(x
−1/γ). So, the distribution of the nor-

malized maximum is given by the following extreme value distribution:

Hγ,P (x) = P0(x
−1/γ). (6)

In the special case where the search technology Pn is Poisson, we have P0(z) = e−z and we
therefore recover (5), the Fréchet extreme value distribution.

For example, if Pn is a negative binomial search technology and r ∈ N \ {0}, then we have

P0(z) =
(

r
r+z

)r

and the extreme value distribution is

Hγ,P (x) =

(
r

r+ x−1/γ

)r

.

This is a generalization of the Fréchet distribution. As r→∞ and the negative binomial search
technology converges to the Poisson, we recover the Fréchet.

Figure 2 provides an illustration that shows how the extreme value distribution varies with
the search technology Pn. For the Poisson distribution, there is no asymptotic dispersion, so
the extreme value distribution is the standard Fréchet distribution. However, as we move away
from the Poisson, the additional dispersion arising from the search technology leads to a first-
order stochastic dominance shift in the extreme value distribution. In Section 4, we prove that
this first-order stochastic dominance result holds generally.

4. EXTREME VALUE DISTRIBUTION

In this section, we provide a general result regarding the form of the extreme value distribu-
tion when the number of draws is random and the search technology is mixed Poisson.

We first present the standard result for the extreme value distribution when the number of
draws is fixed, and then provide our novel result for a random number of draws.

16Notice that this result does not require taking θ →∞, as it does for the case where n is fixed.
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FIGURE 2.—Extreme Value Distributions for Negative Binomial Family (G is Pareto and γ = 1/2).

We assume throughout the remainder of the paper that G is well-behaved in the sense that it
has a finite tail index γ ∈R where the tail index is defined as follows.

DEFINITION 1—Tail Index: The tail index γ ∈R of a distribution G is given by

γ ≡ lim
x→x

d

dx

(
1−G(x)

g(x)

)
.

The tail index is a measure of tail fatness, with a higher value of γ corresponding to fatter
tails. It is critical for determining the type of the extreme value distribution.

4.1. Fixed Number of Draws

Let X1, . . . ,Xn be i.i.d. random variables with distribution G. Define the random variable
Mn ≡ max{X1, . . . ,Xn} where n ≥ 1. Given that we assume G is well-behaved with tail
index γ, in the sense of Definition 1, classical extreme value theory tells us that there exist
normalizing constants an, bn such that the sequence of normalized random variables Zn ≡
anMn + bn converges in distribution as n→∞ to the following:

Hγ(x) =

{
e−(1+γx)−1/γ

if γ ̸= 0,

e−e−x
if γ = 0,

(7)
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where Hγ(x) ≡ limn→∞Pr(Zn ≤ x). We say that G is in the domain of attraction of the
extreme value distribution Hγ .17 This distribution must be one of only three types: Fréchet (if
γ > 0), reverse-Weibull (if γ < 0), or Gumbel (if γ = 0).18

4.2. Random Number of Draws

Now suppose N(θ) is a discrete random variable with mean θ, and define the random variable
MN(θ) ≡max{X1, . . . ,XN(θ)}. Theorem 1 tells us that there exist normalizing constants aθ ,
bθ such that the sequence of normalized random variables ZN(θ) ≡ aθMN(θ) + bθ converges in
distribution as θ→∞ and the limiting distribution (i.e. the extreme value distribution) takes a
form which depends on both the tail index γ and the search technology Pn.

THEOREM 1—Extreme Value Distribution: Suppose N(θ) is a random variable with mixed
Poisson distribution Pn and mean θ. Let an, bn be constants such that the distribution of the
normalized random variable Zn ≡ anMn + bn converges as n→∞ to the extreme value dis-
tribution Hγ(x)≡ limn→∞Pr(Zn ≤ x) given by

Hγ(x) = e−vγ(x)

where vγ(x) ≡ (1 + γx)−1/γ if γ ̸= 0 and vγ(x) ≡ e−x if γ = 0. The distribution of the nor-
malized random variable ZN(θ) ≡ aθMN(θ) + bθ converges as θ → ∞ to the extreme value
distribution Hγ,P (x)≡ limθ→∞Pr(ZN(θ) ≤ x) given by

Hγ,P (x) = P0(vγ(x)). (8)

PROOF: See Appendix B.1. Q.E.D.

Theorem 1 is useful because it allows us to generalize the standard results in extreme value
theory to incorporate heterogeneous agents – who may receive a different number of draws –
into any economic model involving an extreme value process.

The form of the extreme value distribution (8) is the same as for the Pareto example (6)
in Section 3. In general, the standard extreme value distribution Hγ first-order stochastically
dominates Hγ,P for any search technology that is not Poisson, i.e. P0(vγ(x)) > e−vγ(x) for
any x. As a result, the expected value of the distribution Hγ,P is always strictly lower than the
expected value of the distribution Hγ if the search technology Pn is not Poisson.19

Corollary 1 summarizes this result. Intuitively, the first-order stochastic dominance arises
because there are diminishing marginal returns to the number of draws for any given agent. This
means that the expected value of the maximum draw across agents is decreasing in the degree
of asymptotic dispersion in the number of draws, which is equal to the degree of heterogeneity
across agents. From this perspective, greater dispersion in the number of draws can be viewed
as a kind of “misallocation” in the number of draws across agents.

17See, for example, Theorem 1.1.8 in de Haan and Ferreira (2006). Examples of such normalizing constants are
an = 1/G−1(1− 1/n) and bn = 0 for fat-tailed distributions with γ > 0.

18To see this, observe that Hγ(x) = e−e−x
(Gumbel) for γ = 0, Hγ((x−1)/γ) = e−x−1/γ

(Fréchet) for γ > 0,
and Hγ(−(x+ 1)/γ) = e−(−x)−1/γ

(reverse-Weibull) for γ < 0.
19Assumption 2 implies P0(z) = EF [e−zX ]. Since e−zX is a convex function of X for any z ∈ R+, Jensen’s

inequality implies EF [e−zX ]> e−zEF [X] = e−z and therefore P0(z)> e−z for any z ∈ R+.
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COROLLARY 1—First-Order Stochastic Dominance: If a mixed Poisson search technology
Pn is not Poisson, the standard extreme value distribution Hγ first-order stochastically domi-
nates the extreme value distribution Hγ,P .

In the special case where Pn is Poisson and P0(z) = e−z , it is easy to see that we recover
the standard form of the extreme value distribution, i.e. Hγ,P (x) = Hγ(x). Conversely, if
Hγ,P (x) =Hγ(x) and Pn is mixed Poisson, then it must be Poisson.20

COROLLARY 2—Uniqueness of Poisson: For any mixed Poisson search technology Pn, the
extreme value distribution is standard, i.e. Hγ,P (x) =Hγ(x), if and only if Pn is Poisson.

As we discussed, the reason behind the unique role of the Poisson distribution is the fact
that the mixing distribution F is degenerate and there is no asymptotic dispersion. The random
variable N(θ) behaves asymptotically like a constant. However, if the search technology Pn is
not Poisson then N(θ) exhibits asymptotic dispersion and the extreme value distribution does
not take any of the three standard forms.

Our class of extreme value distributions shares with the three standard extreme value distri-
butions a convenient property. Distributions in this class are max stable in the following sense.
If we take a distribution of the form (8) and use this as our underlying distribution G, and then
apply the same mixed Poisson search technology Pn, the resulting extreme value distribution
delivered by Theorem 1 is the same distribution G. That is, the extreme value distribution lies
within its own domain of attraction, i.e. it is max stable.

THEOREM 2—Max Stability: Suppose the underlying distribution G is an extreme value
distribution with cdf G(x) = P0(vγ(x)) for some mixed Poisson search technology Pn and
γ ∈R. The distribution G lies in its own domain of attraction, i.e. Hγ,P =G.

PROOF: See Appendix B.2. Q.E.D.

Our next result regarding the tail index follows from Theorems 1 and 2.

COROLLARY 3—Inheritance of Tail Index: Suppose that Hγ,P (x) = P0(vγ(x)) for some
mixed Poisson search technology Pn and an underlying distribution G with tail index γ ∈R. If
the distribution Hγ,P has tail index γH , then it inherits the same tail index, i.e. γH = γ.

PROOF: See Appendix B.3. Q.E.D.

Corollary 3 says that the tail index γ of an underlying distribution G is inherited by the ex-
treme value distribution Hγ,P . Therefore, regardless of the search technology Pn, the extreme
value distribution always retains the same tail index (see Figure 2).

4.3. Examples

We now present some examples of the extreme value distribution for different search tech-
nologies and a general underlying distribution G.

20To see this, if Pn is mixed Poisson and Hγ,P (x) = Hγ(x), then P0(vγ(x)) = e−vγ(x) by Theorem 1, so
P0(z) = e−z . Thus the probability generating function of Pn is e−θ(1−y) by Lemma 1 and Pn must be Poisson
because a distribution is uniquely determined by its probability generating function.
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EXAMPLE 4.1—Poisson: If Pn is Poisson, the extreme value distribution is

Hγ,P (x) =

{
e−(1+γx)−1/γ

if γ ̸= 0,

e−e−x
if γ = 0.

That is, the Poisson search technology delivers the standard extreme value distribution not only
for the Pareto example in Section 3 but for any underlying distribution.

EXAMPLE 4.2—Negative Binomial: If Pn is a negative binomial search technology,

Hγ,P (x) =


(

r

r+(1+γx)−1/γ

)r

if γ ̸= 0,(
r

r+e−x

)r

if γ = 0,

where r ∈N \ {0}. Clearly, this differs from the standard extreme value distribution above.21

5. EXTREME VALUE OUTCOMES

In this section, we provide a general result regarding the outcomes of extreme value processes
when the number of draws is random and the search technology is mixed Poisson.

More precisely, we study the asymptotic behavior of the expected value of functions ζ of the
maximum MN(θ) where the number of draws N(θ) is a random variable. Specifically, we take
the expectation of ζ(MN(θ)) with regard to the distribution of the maximum, HP (x;θ), and
then consider the limit as the expected number of draws θ goes to infinity. That is, we consider
the asymptotic behavior of the extreme value outcome, EHP

[ζ(MN(θ))].
We first state the original result from Gabaix et al. (2016) regarding extreme value outcomes

when the number of draws is fixed, and then present our result for a random number of draws.
We require the following definition of regular variation.22

DEFINITION 2—Regular Variation: A function k : R+ → R is regularly varying at zero
with index ρ, denoted k(t) ∈RV 0

ρ , if and only if, for all a > 0, we have

lim
t→0

k(at)

k(t)
= aρ.

The following assumption regarding the function ζ will be used in Theorem 3.

ASSUMPTION 3: The function ζ : [x, x̄]→R+ is measurable and bounded on [x,x] for any
x ∈ (x, x̄), and

∫ x

x
|ζ(x)g(x)|dx is finite.

In our statement of the following results, we adopt standard notation and we write
h1(θ)∼θ→∞ h2(θ), or simply h1(θ)∼ h2(θ), if and only limθ→∞ h1(θ)/h2(θ) = 1.

21The extreme value distributions derived here are consistent with those derived in Section 3 for γ ̸= 0 except for
the linear transformation 1+γx. This allows the flexibility to accommodate vγ(x) = e−x in the limit as γ → 0 since
we define vγ(x)≡ (1 + γx)−1/γ if γ ̸= 0. This form is consistent with the generalized extreme value distribution
(7) which incorporates all three standard types.

22See Bingham et al. (1987) or Resnick (1987). Notice that k(t) ∈RV 0
ρ is equivalent to k̂(t)≡ k(1/t) ∈RV ∞

−ρ,
which we use whenever convenient.
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5.1. Fixed Number of Draws

Let X1, . . . ,Xn be i.i.d. random variables with distribution G where n≥ 1 and define Mn ≡
max{X1, . . . ,Xn}. Recall that the distribution of the maximum Mn is given by H(x;n) =
G(x)n. Gabaix et al. (2016) show that if ζ(G−1(1− t)) ∈RV 0

ρ for some ρ >−1, then in the
limit as the number of draws n becomes large, we obtain

EH [ζ(Mn)] =

∫ x

x

ζ(x)dH(x;n)∼n→∞ ζ

(
G−1

(
1− 1

n

))
Γ(ρ+ 1) (9)

where Γ :R→ R+ is the Gamma function defined by Γ(a)≡
∫∞
0

ta−1e−tdt.
As discussed in Gabaix et al. (2016), the probability that a draw from G exceeds the maxi-

mum Mn is approximately 1/n. Therefore, we have EH [1−G(Mn)]≈ 1/n. This implies that
EH [G(Mn)]≈ 1−1/n and thus EH [Mn]≈G−1 (1− 1/n) subject to a correction factor. More
generally, we have EH [ζ(Mn)]≈ ζ(G−1 (1− 1/n)) subject to a correction factor. Expression
(9) tells us the correction factor is Γ(ρ + 1). If ρ ∈ (0,1), there is a downwards correction,
otherwise the correction is upwards.23

The value of ρ depends on both the application and the underlying distribution G. Lemma 7
in Appendix C provides some useful facts about regular variation that are helpful for determin-
ing the value of ρ in specific applications. For example, if we consider just the maximum then
ζ(x) = x and Lemma 7 tells us that ρ=−γ if x=+∞.

5.2. Random Number of Draws

Now suppose the number of draws N(θ) is a random variable with mean θ and define
MN(θ) ≡ max{X1, . . . ,XN(θ)}. If the search technology Pn is mixed Poisson, the distribu-
tion of the maximum HP (x;θ) is given by Lemma 3. In the limit as the average number of
draws θ becomes large, we obtain the following result.

THEOREM 3—Extreme Value Outcomes: Suppose Pn is a mixed Poisson search technology
with mean θ and type distribution F . Assume that ζ satisfies Assumption 3 and ζ(G−1(1− t)) ∈
RV 0

ρ for some ρ >−1. If EF [X
s] is finite for all s in a neighborhood of −ρ, then

EHP
[ζ(MN(θ))] =

∫ x

x

ζ(x)dHP (x;θ)∼θ→∞ ζ

(
G−1

(
1− 1

θ

))
Γ(ρ+ 1) EF [X

−ρ]︸ ︷︷ ︸
effect of heterogeneity

where Γ :R→ R+ is the Gamma function defined by Γ(a)≡
∫∞
0

ta−1e−tdt.

PROOF: See Appendix C.1. Q.E.D.

We can provide a simple heuristic proof of Theorem 3 by exploiting the mixed Poisson
representation of the search technology Pn and an existing result in Mangin (2024) for the
Poisson special case. The formal proof of Theorem 3 can be found in Appendix C.1.

23Since we assume that ζ(G−1(1 − t)) ∈ RV 0
ρ , we know from Definition 2 that ζ(G−1(1 − t)) behaves like

tρ in the limit as t → 0 where t = 1/n. Informally, the correction factor is upwards (downwards) if tρ is convex
(concave) by Jensen’s inequality. If ρ= 0, there is no correction.
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5.3. Heuristic Proof

Define Hτ (x;θ)≡HP (x;θ|τ), the distribution of the maximum conditional on type τ . The
distribution Pn conditional on τ is Poisson with mean θτ , so we can apply a result regarding
extreme value outcomes for the Poisson special case in Mangin (2024), which says

EHτ [ζ(MN(θ))]∼θ→∞ ζ

(
G−1

(
1− 1

θτ

))
Γ(ρ+ 1).

Our assumption that ζ(G−1(1− t)) is regularly varying at zero with index ρ implies

EHτ [ζ(MN(θ))]∼θ→∞ ζ

(
G−1

(
1− 1

θ

))
Γ(ρ+ 1)τ−ρ.

Next, using the fact that HP (x;θ) =
∫∞
0

Hτ (x;θ)dF (τ), we can write

EHP
[ζ(MN(θ))] =

∫ ∞

0

EHτ [ζ(MN(θ))]dF (τ).

By properties of regular variation, we obtain the desired result:

EHP
[ζ(MN(θ))]∼θ→∞ ζ

(
G−1

(
1− 1

θ

))
Γ(ρ+ 1) EF [X

−ρ].︸ ︷︷ ︸
effect of heterogeneity

5.4. Effect of Heterogeneity

The term EF [X
−ρ] featured in Theorem 3 represents the effect of heterogeneity on extreme

outcomes. This term is an additional correction factor. By Jensen’s inequality, if ρ > 0 and τ−ρ

is convex, there is an upwards correction (i.e. EF [X
−ρ]> 1), and if ρ < 0 and τ−ρ is concave

(since ρ >−1), there is a downwards correction (i.e. EF [X
−ρ]< 1).24

For any given value of ρ, the magnitude of the correction term EF [X
−ρ] is driven by the de-

gree of heterogeneity of the type distribution F . If ρ > 0 and τ−ρ is convex, the term EF [X
−ρ]

is increasing in a mean-preserving spread of the type distribution F . However, if ρ < 0 and
τ−ρ is concave, the term EF [X

−ρ] is decreasing in a mean-preserving spread of F . Therefore,
extreme value outcomes may be either increasing (for ρ > 0) or decreasing (for ρ < 0) in a
mean-preserving spread of the type distribution F .

COROLLARY 4—Mean-Preserving Spread: Suppose that Pn is a mixed Poisson search tech-
nology with type distribution F and the assumptions of Theorem 3 hold for some ρ >−1.

(i) If ρ > 0, extreme outcomes are increasing in a mean-preserving spread of F .
(ii) If ρ < 0, extreme outcomes are decreasing in a mean-preserving spread of F .

(iii) If ρ= 0, extreme outcomes are not affected by a mean-preserving spread of F .

24The reason why this correction moves in the opposite direction to the first correction is the following. Since we
assume ζ(G−1(1− t)) ∈RV 0

ρ , we know ζ(G−1(1− t)) behaves like tρ in the limit as t→ 0 where t= 1/n as for
the case where n is deterministic. So, the first correction is still needed. However, n is now random, so an additional
correction is required. Because ζ(G−1(1−1/n)) behaves like n−ρ in the limit as n→∞, the additional correction
factor is upwards (downwards) if n−ρ is convex (concave) by Jensen’s inequality. If ρ= 0, there is no correction.
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5.5. Examples

We now present some examples of the behavior of extreme outcomes for different search
technologies, a specific function ζ , and a general underlying distribution G.

EXAMPLE 5.1—Poisson: If ζ(x) = xα and x = ∞, then Lemma 7 in Appendix C says
G−1(1− t) ∈ RV 0

−γ where γ is the tail index of G. Therefore, ζ(G−1(1− t)) ∈ RV 0
ρ where

ρ=−γα. If Pn is a Poisson search technology and α< 1/γ, then ρ >−1 and

EHP
[Mα

N(θ)]∼
(
G−1

(
1− 1

θ

))α

Γ(1− γα).

For example, consider a generalized mean with exponent ε− 1 where ε > 1. We choose this
example because, in a model such as Melitz (2003) with monopolistic competition and het-
erogeneous firms with productivity distribution HP and constant elasticity of substitution ε,
this would represent aggregate productivity, which determines all other aggregate outcomes.
Letting α= ε− 1 and assuming that ε < 1 + 1/γ, we obtain(∫ x

x

xε−1dHP (x;θ)

) 1
ε−1

∼G−1

(
1− 1

θ

)
(Γ(1− γ(ε− 1)))

1
ε−1 .

This expression depends only on the distribution G and its tail index γ, plus the parameter ε
from the function ζ . There is no asymptotic effect of the search technology.

EXAMPLE 5.2—Negative Binomial: If ζ(x) = xα and x=∞, then ζ(G−1(1− t)) ∈RV 0
ρ

where ρ=−γα. If Pn is a negative binomial search technology and r ∈N \ {0}, then F is the
gamma distribution and EF [X

−ρ] = rρΓ(r−ρ)

Γ(r)
. If α< 1/γ, then ρ >−1 and

EHP
[Mα

N(θ)]∼
(
G−1

(
1− 1

θ

))α

Γ(1− γα)
r−γαΓ(r+ γα)

Γ(r)
.︸ ︷︷ ︸

effect of heterogeneity

Again, letting α= ε− 1 and assuming that 1< ε< 1 + 1/γ, we obtain(∫ x

x

xε−1dHP (x;θ)

) 1
ε−1

∼G−1

(
1− 1

θ

)
(Γ(1− γ(ε− 1)))

1
ε−1 r−γ

(
Γ(r+ γ(ε− 1))

Γ(r)

) 1
ε−1

︸ ︷︷ ︸
effect of heterogeneity

.

Clearly, the effect of heterogeneity depends on the search technology through the parameter r,
in addition to the tail index γ and the parameter ε. For example, if G is fat-tailed and γ > 0, we
have ρ=−γ(ε−1)< 0 and a mean-preserving spread in the type distribution F has a negative
effect on this extreme outcome by Corollary 4.

Next, we consider some applications of our general results to aggregate productivity,
markups, and social networks. Before presenting these, we make the following assumption.

ASSUMPTION 4: The distribution G has tail index −1 ≤ γ < 1 and the search technology
Pn satisfies EF [X

s] is finite for all s in a neighborhood of −ρ.

Assumption 4 applies to all three of our applications (for different values of ρ). This assump-
tion ensures that we can apply Theorem 3 in all of these applications.
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6. APPLICATION: AGGREGATE PRODUCTIVITY

6.1. Environment

Suppose there is a continuum of measure one of firms. Time is discrete and continues forever.
Firm-level productivity is influenced by an R&D process which generates new ideas. In each
period, firms draw a number of new ideas from a common underlying distribution of ideas G
which has unbounded upper support, [x,∞)⊆R+.

The expected number of new ideas at a firm in any given period t ∈ {1,2, . . .} depends on
both the aggregate R&D intensity θ̄ ∈R+, which is common across firms, and the firm-specific
R&D intensity τ , which is constant over time but heterogeneous across firms.25 The distribution
of R&D intensity across firms is given by a cdf F with support τ ∈ [0,∞). For any given τ ,
the number of ideas a firm receives is a Poisson random variable with mean equal to τ θ̄. We
assume the average R&D intensity τ is one, so the average number of new ideas is θ̄.

We assume that an individual firm’s productivity in period T is equal to the best idea that firm
has received in any period t ∈ {1,2, . . . , T}. Applying Lemma 10, we know that the distribution
of the cumulative number of draws received by a firm at time T is mixed Poisson with mean
θ̂T = T θ̄ and mixing distribution F .26 Let P T

n denote this mixed Poisson distribution, which is
our search technology in this application.

Suppose the distribution of R&D intensity is a gamma distribution with support τ ∈ [0,∞)

and cdf F (τ) = γ(r,rτ)

Γ(r)
. This implies the search technology P T

n is negative binomial with pa-

rameter r and mean θ̂T = T θ̄. A measure of dispersion is cv2
F = 1/r, so we refer to 1/r simply

as the degree of R&D heterogeneity.27

Aggregate productivity in period T is equal to the average firm-level productivity in period
T . That is, it is equal to the expected value of a firm’s best idea where the total number of ideas
is given by the search technology Pn with mean θ̂T . That is,

yP (θ̂T ) =

∫ ∞

x

xdHP (x; θ̂T ),

where HP (x; θ̂T ) is the distribution of the maximum of a firm’s ideas up until T .
Now consider the limit as T →∞. We have θ̂T = T θ̄ →∞ for any θ̄ ∈ R+. Therefore, we

can apply our asymptotic results for large θ in the limit as T →∞.

6.2. Results

Proposition 1 describes the asymptotic behavior of aggregate productivity yP (θ) and the
impact of R&D heterogeneity. This result follows from Theorem 3 with ζ(x) = x, which im-
plies that ρ=−γ because x̄=∞. The results in Proposition 1 hold generally, not just for the
negative binomial family. See Appendix D.1 for the general result which holds for any mixed
Poisson search technology.

PROPOSITION 1—Aggregate Productivity: If Pn is negative binomial with parameter r ∈
N \ {0}, the distribution of ideas G has tail index γ ∈ [0,1) and x̄=∞, and r >−γ, then

25We can interpret θ̄ as representing spillovers from technological advances (from either private or public R&D)
that benefit all firms in the economy. We can interpret firm-specific R&D intensity τ as reflecting a firm’s R&D
expenditure and its effectiveness in generating new ideas.

26The statement of Lemma 10 and its proof can be found in Appendix F.
27The negative binomial family of mixed Poisson distributions was first used in Hausman et al. (1984) to model

heterogeneity in R&D effectiveness across firms.
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(i) Aggregate productivity is given by

yP (θ)∼θ→∞ G−1

(
1− 1

θ

)
Γ(1− γ)

(
r−γΓ(r+ γ)

Γ(r)

)
.︸ ︷︷ ︸

effect of R&D heterogeneity

(ii) If γ ∈ (0,1), aggregate productivity yP (θ) is decreasing in R&D heterogeneity.
(iii) If γ = 0, aggregate productivity yP (θ) does not depend on R&D heterogeneity.

PROOF: See Appendix D.1. Q.E.D.

Proposition 1 implies that aggregate productivity is maximized when the R&D heterogeneity
1/r goes to zero, i.e. the search technology is Poisson. Intuitively, this is because there are
diminishing marginal returns to the number of ideas discovered by a single firm. A planner
would ideally want to equalize the number of new ideas across firms in order to maximize
aggregate productivity.

Importantly, heterogeneity in R&D intensity influences not only the level of aggregate pro-
ductivity but also the cross-sectional distribution of productivity across firms.

To obtain our next result, we apply Theorem 1 where P0(z) = ( r
r+z

)r .

COROLLARY 5—Productivity Distribution: If Pn is negative binomial with parameter r ∈
N \ {0}, the distribution of ideas G satisfies the conditions of Theorem 1 and has tail index
γ ∈ [0,1), and r >−γ, the cdf of the (normalized) cross-sectional productivity distribution is

Hγ,P (x) =

(
r

r+ vγ(x)

)r

where vγ(x)≡ (1 + γx)−1/γ if γ ̸= 0 and e−x if γ = 0.

6.3. Example: Fat-Tailed Distribution of Ideas

Suppose the underlying distribution of ideas is Pareto, G(x) = 1 − x−1/γ with tail index
γ ∈ (0,1). If all firms have the same cumulative number of draws n, i.e. if the search technology
Pn is degenerate, the existing result in Gabaix et al. (2016) implies

y(n)∼n→∞ nγΓ(1− γ).

If the search technology Pn is negative binomial with parameter r >−γ, then

yP (θ)∼θ→∞ θγΓ(1− γ)

(
r−γΓ(r+ γ)

Γ(r)

)
︸ ︷︷ ︸
effect of R&D heterogeneity

and the cdf of the (normalized) cross-sectional productivity distribution is

Hγ,P (x) =

(
r

r+ x−1/γ

)r

.

EXAMPLE 6.1—Poisson: If Pn is a Poisson search technology, letting r→∞ yields

yP (θ)∼θ→∞ θγΓ(1− γ)
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FIGURE 3.—Cross-Sectional Firm Productivity Distribution (G is Pareto and γ = 1/4).

and the cdf of the (normalized) cross-sectional productivity distribution is Fréchet:

Hγ,P (x) = e−x−1/γ

.

EXAMPLE 6.2—Geometric: If Pn is a geometric search technology, setting r = 1 delivers

yP (θ)∼θ→∞ θγΓ(1− γ)Γ(1 + γ).

In this case, the difference in the search technology has no effect if the tail index is γ = 0, but
it leads to lower aggregate productivity if γ > 0 because Γ(1 + γ)< 1.

The cdf of the (normalized) cross-sectional productivity distribution is

Hγ,P (x) =
1

1+ x−1/γ
.

While the distribution is not Fréchet, the Pareto tail index γ is still inherited by the cross-
sectional productivity distribution, consistent with Corollary 3.

From Proposition 1, we know that aggregate productivity yP (θ) is strictly decreasing in R&D
heterogeneity 1/r because γ ∈ (0,1). Therefore, aggregate productivity yP (θ) is highest when
r→∞ (Poisson) and lowest when r = 1 (geometric). For example, suppose that γ = 1/4. The
ratio of aggregate productivity for the geometric versus Poisson search technology is Γ(1+ γ),
which is approximately 0.906 if γ = 1/4. This means the decline in aggregate productivity due
to R&D heterogeneity is significant: around 9.4%.

The search technology also has a significant effect on cross-sectional productivity disper-
sion. Consider the measure of cross-sectional productivity dispersion cvH,P , defined as the
coefficient of variation of the distribution Hγ,P . Assume γ = 1/4. If the search technology
Pn is Poisson, then cvH,P = 0.42. However, if Pn is a geometric search technology then



EXTREME VALUE THEORY WITH HETEROGENEOUS AGENTS 21

cvH,P = 0.52. Therefore, the increase in cross-sectional productivity dispersion due to R&D
heterogeneity is also significant: around 23%.

Figure 3 illustrates this example by depicting the Fréchet productivity distribution that arises
when the search technology is Poisson (or deterministic), as well as the cross-sectional produc-
tivity distribution that arises when the search technology is geometric. When the search tech-
nology changes from Poisson to geometric, average productivity decreases and cross-sectional
productivity dispersion increases. This is consistent with the first-order stochastic dominance
result in Corollary 1. Observe that, regardless of whether the search technology is geometric or
Poisson, the Pareto tail index γ is preserved as Corollary 3 suggests.

7. APPLICATION: MARKUPS

7.1. Environment

Consider a discrete choice model with random utility shocks. There is a continuum of mea-
sure one of consumers, and a continuum of firms. Each firm sells a single indivisible good, and
each consumer has unit demand. Each consumer searches for firms and finds a number of firms
n ∈ {0,1,2, . . .} from which they can purchase.

In this application, the search technology reflects the fact that consumers are heterogeneous
with respect to their search intensity. Some consumers search more intensely and find more
firms on average, while others search less intensely and find fewer firms on average. We assume
the actual number of firms a consumer with search intensity σ finds is a random variable which
is Poisson with mean σθ. The average number of firms that a consumer finds is θ because we
assume the average search intensity is one.

Suppose the search intensity σ of a consumer is given by a Gamma distribution with support
σ ∈ [0,∞) and cdf F (σ) = γ(r,rσ)

Γ(r)
. The distribution of n across consumers is therefore given

by a negative binomial search technology Pn with parameter r. We can interpret cv2
F = 1/r as

representing the degree of consumer heterogeneity.
Each consumer draws a random utility shock xi from a distribution G for each firm i they

find. This shock xi represents the consumer’s valuation of firm i’s good. We assume the distri-
bution G has support [x,x]⊆R+ where x ∈R∪ {+∞}.

Suppose that the n firms a consumer finds set prices simultaneously, after observing the
utility shocks (x1, . . . , xn) and the number of competitors. Let Mn denote the maximum of
(x1, . . . , xn) and let Sn denote the second highest utility shock. In equilibrium, each consumer
purchases from the firm which gives it the highest utility. The expected markup is the expected
price minus marginal cost. If there is only one firm competing for a consumer, the expected
markup is µ(1) = EG(x). If there are two or more firms, the expected markup µ(n) is

µ(n) = E[Mn − Sn].

This type of pricing is often called “personalized pricing”or asymmetric Bertrand competi-
tion. For example, see Rhodes and Zhou (2024). While we focus on this type of pricing, our
general result in Theorem 3 can also deliver the asymptotic markups for the wider class of ran-
dom utility models studied in Gabaix et al. (2016). This includes the related models of Sattinger
(1984) and Hart (1985), as well as the uniform pricing model of Perloff and Salop (1985). For
some applications, this model is perhaps more realistic because firms set the same price for
all consumers without observing consumers’ utility shocks. As shown in Gabaix et al. (2016),
however, all of these models have a common underlying logic and exhibit markups that are
asymptotically proportional to the “personalized pricing” markup we consider here.
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The average markup across consumers, conditional on n≥ 1 firms, is defined by

µP (θ)≡
∞∑

n=1

P̃n(θ)µ(n) (10)

where P̃n(θ)≡ Pr(N(θ) = n|n≥ 1). If we assume x= 0, the average markup is simply28

µP (θ) =

∫ x

x

(
1−G(x)

g(x)

)
dHP̃ (x;θ). (11)

We are interested in the asymptotic average markup that arises in the competitive limit where
the average number of firms each consumer finds becomes large.

7.2. Results

Proposition 2 follows from Theorem 3 with ζ(x) = 1−G(x)

g(x)
, which implies that ρ=−γ.29 We

provide an expression for the asymptotic average markup and describe the effect of an increase
in the degree of consumer heterogeneity. These results hold generally, not just for the negative
binomial family. See Appendix D.2 for the general result which holds for any mixed Poisson
search technology.

PROPOSITION 2—Average Markup: If Pn is negative binomial with parameter r ∈N\{0},
the distribution of utility shocks G has tail index γ ∈ [−1,1), and r >−γ, then

(i) The average markup is given by

µP (θ)∼θ→∞
Γ(1− γ)

θg

(
G−1

(
1− 1

θ

)) (
r−γΓ(r+ γ)

Γ(r)

)
.︸ ︷︷ ︸

effect of consumer heterogeneity

(12)

(ii) If γ ∈ (0,1), the markup µP (θ) is decreasing in consumer heterogeneity.
(iii) If γ ∈ [−1,0), the markup µP (θ) is increasing in consumer heterogeneity.
(iv) If γ = 0, the markup µP (θ) does not depend on consumer heterogeneity.

PROOF: See Appendix D.2. Q.E.D.

If Pn is a Poisson search technology, letting r → ∞ in expression (12) yields the same
expression for the asymptotic markup found in Gabaix et al. (2016). In general, there is a clear
effect of consumer heterogeneity on markups (unless γ = 0).

Greater consumer heterogeneity can either increase or decrease the average markup depend-
ing on the tail index γ of the underlying distribution of utility shocks. As shown in Gabaix
et al. (2016), the elasticity of the markup µ(n) with respect to n is asymptotically equal to the
tail index γ. The tail index therefore determines whether the markup µ(n) is asymptotically
concave or convex, which governs the effect of greater dispersion.

28If x > 0, there is an extra term which goes to zero asymptotically. See Lemma 1 in Mangin (2024) for a general
expression. The derivation uses the well-known result that E[Mn − Sn] =

∫ x

x

(
1−G(x)

g(x)

)
dH(x;n) for n≥ 2.

29Strictly speaking, expression (11) uses the conditional distribution P̃n rather than the mixed Poisson search
technology Pn, but we can use Pn when we apply Theorem 3 to (11) because Pr(N(θ) = 1)→ 0 as θ →∞.
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FIGURE 4.—Effect of Consumer Heterogeneity on Markups (G is uniform and γ =−1).

If γ ∈ [−1,0), the markup µ(n) is asymptotically decreasing and convex. This is because dis-
tributions with γ < 0 are bounded above and the markup µ(n) = E[Mn−Sn], i.e. the expected
gap between the highest and second-highest utility shock, is asymptotically decreasing with n
and converges to zero as n becomes large. In our environment where n is a random variable,
the average markup µP (θ) = EP [µ(n)] given by (10) is increasing in consumer heterogeneity
because of the convexity of the markup µ(n).

If γ ∈ (0,1), the markup µ(n) is asymptotically increasing and concave. This is because dis-
tributions with γ > 0 are not bounded above and the markup µ(n) is asymptotically increasing
with n, although at a decreasing rate, as n becomes large. In our environment where n is a ran-
dom variable, the average markup µP (θ) = EP [µ(n)] is decreasing in consumer heterogeneity
because of the concavity of the markup µ(n).

7.3. Example: Uniform Distribution of Utility Shocks

Suppose the distribution of utility shocks is uniform, G(x) = x on [0,1], which has tail index
γ =−1. If all consumers contact the same number of firms n, i.e. if the search technology Pn

is degenerate, we know from Gabaix et al. (2016) that

µ(n)∼n→∞
1

n
.

If the search technology Pn is negative binomial with parameter r >−γ, then

µP (θ)∼θ→∞
1

θ

(
1

1− 1/r

)
.︸ ︷︷ ︸

effect of consumer heterogeneity

(13)

Figure 4 illustrates the effect of consumer heterogeneity on markups. For any value of r, the
average markup goes to zero in the limit as the expected number of firms each consumer finds
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becomes large. As Figure 4 shows, the average markup is increasing in the degree of consumer
heterogeneity 1/r, consistent with Proposition 2 because γ =−1 for the uniform distribution.
As we discussed, the reason why greater heterogeneity in search intensity increases the average
markup is because µ(n) = 1/n is convex. As Figure 4 shows, the average markup µP (θ) is
lowest when r→∞ (Poisson) and highest as r→ 1.

Our asymptotic markup expression (13) holds in the competitive limit as θ→∞. However,
it is a very good approximation of the exact markup (11) for finite but sufficiently large θ. We
might wonder, how large is sufficiently large? To answer this question for this example, we can
compare the approximation for finite θ given by (13) and the exact markup given by (11).

For higher values of r or lower values of consumer heterogeneity 1/r, the approximation
is better. For example, if r = 5, the approximation is good (< 1% error) only if the average
number of firms θ ≥ 20. However, if r = 10, the approximation is good (< 1% error) if θ ≥ 10
and very good (< 0.05% error) if θ ≥ 20. For the Poisson search technology as r → ∞, the
approximation is very good (< 0.05% error) if the average number of firms θ ≥ 10.

EXAMPLE 7.1—Poisson: If Pn is a Poisson search technology, letting r→∞ yields

µP (θ)∼θ→∞
1

θ
.

EXAMPLE 7.2—Negative Binomial: If Pn is negative binomial with r = 2, we obtain30

µP (θ)∼θ→∞
2

θ
.

The average markup for this example is twice as high as for the Poisson example, i.e. the
increase in the average markup due to greater consumer heterogeneity is 100%.

8. APPLICATION: PEER EFFECTS IN SOCIAL NETWORKS

8.1. Environment

Consider a random social network of students. Each student is connected to a number of
other students (their “friends”) who are chosen uniformly at random from the population of
students. Student outcomes are influenced by the amount of effort a student exerts, which is
determined by peer effects, i.e. the influence of their friends’ study effort on their own study
effort. There is a large number of students.

There are two periods. In period one, each student exerts a level of study effort drawn from
an exogenous distribution G with unbounded upper support, [x,∞)⊆R+.

In period two, each student observes their friends’ effort levels in period one and chooses to
study with the same effort as their most studious friend.31 At the end of period two, students
receive an outcome ϕ(x) that is strictly increasing in their study effort x in period two, i.e.
ϕ′(x)> 0. The average student outcome is the expected value of ϕ(x) across all students.

In this application, the search technology Pn is the degree distribution of the social network,
i.e. the distribution of the number of friends across students.32

30Note that we cannot consider the geometric example (where r = 1) because we require r >−γ.
31While peer effects are often based on the average effort among friends, it is also common to consider the

maximum effort among friends, e.g. see Boucher et al. (2024) for a discussion and a generalization. Instead of the
maximum-effort friend, we could also consider the second-highest effort or the minimum-effort friend and our general
results could still be applied.

32While we keep this example simple, see Newman et al. (2001) for a development of the theory of random graphs
that generalizes beyond the Poisson to arbitrary degree distributions.
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We assume that students are heterogeneous with respect to their popularity π, which is dis-
tributed according to a cdf F with mean equal to one. For a student with popularity π, the exact
number of friends is given by a Poisson distribution with mean πθ where θ is common across
students. The average number of friends per student is θ.

We assume that F is a Pareto distribution with support π ∈ [π0,∞) and cdf F (π) =

1 −
(

π
π0

)−1/λ

where λ ∈ (0,1) and EF [X] = π0/(1 − λ). To ensure that EF [X] = 1, we
set π0 = 1−λ. This distribution is useful because it has fat tails, with a higher parameter λ im-
plying fatter tails. The resulting power-law search technology (or degree distribution) is mixed
Poisson, as discussed in Campbell et al. (2024).33

Suppose that ϕ(x) = bxβ where b, β > 0 and
∫ x

x
|ϕ(x)g(x)|dx is finite. The parameter β

represents the curvature of outcomes as a function of study effort. We may have either β < 1
(ϕ concave), β > 1 (convex), or β = 1 (ϕ linear). We assume that the curvature of student
outcomes with respect to study effort is not too high, i.e. β < 1/γ where γ ≥ 0 is the tail index
of the distribution G, the initial distribution of study effort.

Given there is a large number of students, the average outcome ϕP (θ) is

ϕP (θ) =

∫ ∞

x

ϕ(x)dHP (x;θ).

Now consider the limit as the network becomes dense, i.e. as the average number of friends θ
becomes large. Our question is: What is the asymptotic behavior of the average study outcome
ϕP (θ) when the network becomes dense, i.e. as θ→∞?

Since we assume the popularity distribution F is Pareto, the search technology Pn is power-
law and we have the following expression for any k < 1/λ:

EF [X
k] =

(1− λ)k

1− kλ
.

By varying the parameter λ, we can isolate the effect of the search technology. Since the mean
is equal to one because we set π0 = 1−λ, an increase in λ is a mean-preserving spread and we
thus refer to λ as the popularity heterogeneity.

8.2. Results

Proposition 3 follows from Theorem 3 with ζ(x) = ϕ(x), which implies ρ = −γβ. These
results hold more generally than the power-law family. See Appendix D.3 for the general result
which holds for any mixed Poisson search technology and therefore for any distribution of
popularity, not just the Pareto.

PROPOSITION 3—Average Outcome: If the distribution of popularity F is Pareto with tail
index λ ∈ (0,1) and the distribution of initial study effort G has tail index γ ∈ [0,1), then

(i) The average student outcome is given by

ϕP (θ)∼θ→∞ b

(
G−1

(
1− 1

θ

))β

Γ(1− βγ)
(1− λ)βγ

1− βγλ
.︸ ︷︷ ︸

effect of popularity heterogeneity

33See Campbell et al. (2024) for a discussion of power-law degree distributions in random networks.



26

(ii) If γ ∈ (0,1), average outcome ϕP (θ) is decreasing in popularity heterogeneity.
(iii) If γ = 0, average outcome ϕP (θ) does not depend on popularity heterogeneity.

PROOF: See Appendix D.3. Q.E.D.

Clearly, the effect of the search technology on the average student outcome depends on the
degree of popularity heterogeneity λ. Specifically, greater heterogeneity in student popularity
decreases the average outcome across students. Intuitively, this is because there are diminishing
marginal returns to the number of friends of an individual student: an additional friend is more
valuable to a less popular student with few friends than to a highly popular student with lots
of friends. A planner seeking to maximize the average student outcome would therefore prefer
less dispersion in popularity across students.

8.3. Example: Fat-Tailed Distribution of Effort

Suppose the initial distribution of study effort is G(x) = 1−
(

x
x0

)−1/γ

with tail index γ ∈
(0,1). We set x0 = 1 − γ to ensure that an increase in γ is a mean-preserving spread of the
distribution of study effort. We refer to γ as the effort heterogeneity.

If all students have the same number of friends n, i.e. the search technology Pn is degenerate,
the result from Gabaix et al. (2016) delivers the following expression:

ϕ(n)∼n→∞ bnβγ(1− γ)βΓ(1− βγ).

If students differ in their popularity and λ > 0, the average study outcome is

ϕP (θ)∼θ→∞ bθβγ(1− γ)βΓ(1− βγ)
(1− λ)βγ

1− βγλ
.︸ ︷︷ ︸

effect of popularity heterogeneity

EXAMPLE 8.1—Power-law and λ → 0: Let ϕ(x) = x. If the popularity distribution F is
Pareto with π0 = 1− λ, then in the limit as the tail index λ→ 0, we have

ϕP (θ)∼θ→∞ θγΓ(2− γ),

where we use the fact that (1− γ)Γ(1− γ) = Γ(2− γ) for the Gamma function.

EXAMPLE 8.2—Power-law and λ > 0: Let ϕ(x) = x. If the popularity distribution F is
Pareto with π0 = 1− λ and popularity heterogeneity λ > 0, then

ϕP (θ)∼θ→∞ θγΓ(2− γ)
(1− λ)γ

1− γλ
.

The average student outcome is decreasing in the popularity heterogeneity λ, but it is increasing
in the effort heterogeneity γ for sufficiently large θ.

For example, if γ = 1/2 and λ= 1/2 in the second example, the average student outcome is
5.7% lower than in the first example. Because an increase in λ is a mean-preserving spread of
the popularity distribution F , the only difference between these two examples is the degree of
heterogeneity in student popularity.
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Heterogeneity in popularity clearly matters for student outcomes, even in the limit where
the network becomes dense and the average number of friends becomes large. All else equal,
a policy which leads to less popular students having more friends and more popular students
having fewer friends would increase the average outcome. However, a policy which increases
the average number of friends but also increases the degree of popularity dispersion may either
increase or decrease the average outcome.

For example, let θ denote the average number of friends and let λ → 0 before the policy
change (i.e. the first example). Now let θ(1 + α) for α > 0 be the average number of friends
and let λ > 0 be the popularity heterogeneity after the policy change. Taking the limit as θ
becomes large, the ratio of student outcomes is

ϕ2
P (θ(1 + α))

ϕ1
P (θ)

=
(1 + α)γ(1− λ)γ

1− γλ
.

Therefore, the average student outcome is higher after the policy change if and only if

1 + α>
(1− γλ)1/γ

1− λ
.

For example, if λ = 1/2 and the effort heterogeneity is γ = 1/2, the policy change improves
the average student outcome if and only if the average number of friends increases by more
than 12.5%. Otherwise, the disadvantages of greater dispersion in student popularity more than
offset the benefits of a higher average number of friends.

9. CONCLUSION

This paper provides some general results that allow us to apply extreme value theory in eco-
nomic environments where agents are heterogeneous. We show that extreme value outcomes,
and the nature of the extreme value distribution itself, depend not only on the underlying dis-
tribution of shocks and its tail index, but also on the search technology, which reflects hetero-
geneity in the expected number of draws across different types of agents.

In general, unless the search technology is Poisson, the extreme value distribution does not
take any of the three standard forms (Fréchet, Gumbel, Weibull) and extreme value outcomes
are influenced by the search technology. Interestingly, we find that extreme value outcomes
may be either increasing or decreasing in the degree of heterogeneity across agents.

We consider some applications of our general results. We find that heterogeneity in R&D
intensity across firms can have a quantitatively significant effect on both aggregate productivity
and the degree of cross-sectional productivity dispersion. We also find that heterogeneity in
consumers’ search intensity can significantly affect the average markup and the effect may be
either positive or negative. Finally, we apply our results to a simple model of peer effects in
social networks and show that greater heterogeneity in student popularity can have a negative
effect on the average student outcome.

While our asymptotic results strictly apply only in the limit as the expected number of draws
becomes infinite, the expressions we derive for extreme value outcomes can also be used as
approximations when the expected number of draws is finite but large enough. For example,
we have seen that if the average number of firms a consumer finds is sufficiently large, our
markup expression can be a very good approximation. Similarly, if the average number of
friends in a social network is finite but sufficiently large, then our expression for the average
student outcome is potentially a very good approximation.
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We hope the simplicity, tractability, and flexibility of our expressions will make them use-
ful for future applications. In particular, our new class of extreme value distributions can be
used directly as a reduced-form generalization of the three standard extreme value distributions
which incorporates additional dispersion without needing to use our microfoundation for this
class. The class of extreme value distributions for the negative binomial family is particularly
tractable and may be useful for empirical work in the future.

APPENDIX A: PROOFS FOR SECTION 2

We first summarize some useful properties of the function P0 that will be used throughout.

LEMMA 4: If Pn is mixed Poisson, the function P0 :R+ → [0,1] is given by

P0(θ) =

∫ ∞

0

e−θτdF (τ).

The function P0 is continuous and infinitely differentiable for any θ > 0, with P ′
0(θ) < 0 and

P ′′
0 (θ)> 0 for all θ > 0. We have (i) P0(0) = 1; (ii) P ′

0(0) =−1; and (iii) limθ→∞P0(θ) = 0.

PROOF: These properties follow from Assumption 2. See Theorem 1.4 in Schilling et al.
(2012) for a proof that P0 is infinitely differentiable for any θ > 0. Q.E.D.

PROOF OF LEMMA 1: Starting with Assumption 2, we have

Pn(θ) =

∫ ∞

0

(θτ)ne−θτ

n!
dF (τ)

for some mixing distribution with cdf F . So, we have

∞∑
n=0

Pn(θ)y
n =

∞∑
n=0

yn

∫ ∞

0

(θτ)ne−θτ

n!
dF (τ) =

∫ ∞

0

∞∑
n=0

(θyτ)n

n!
e−θτdF (τ).

Therefore, the fact that
∑∞

n=0
(θyτ)n

n!
= eθyτ implies that

∞∑
n=0

Pn(θ)y
n =

∫ ∞

0

e−θ(1−y)τdF (τ).

By Lemma 4, we have P0(z) =
∫∞
0

e−zτdF (τ), thus
∑∞

n=0Pn(θ)y
n = P0(θ(1− y)). Q.E.D.

APPENDIX B: PROOFS FOR SECTION 4

B.1. Proof of Theorem 1

PROOF OF THEOREM 1: Theorem 1 follows directly from the Barndorff-Nielsen (1964)
theorem. The form below is based on Theorem 6.2.1 in Galambos (1987).

THEOREM—(Barndorff-Nielsen, 1964): Let X1, . . . ,Xn be i.i.d. random variables and de-
fine Mn ≡max{X1, . . . ,Xn}. Let an and bn be sequences of normalizing constants such that
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the distribution of Zn ≡ anMn + bn converges as n→∞ to Hγ(x). If the random variable
N(θ)/θ converges in probability to a random variable X , then

lim
θ→∞

Pr(aθMN(θ) + bθ ≤ x) =

∫ ∞

0

Hγ(x)
τdPr(X ≤ τ).

By this theorem, if Pn is mixed Poisson with mixing distribution F , Lemma 5 implies

Hγ,P (x) = lim
θ→∞

Pr(aθMN(θ) + bθ ≤ x) =

∫ ∞

0

Hγ(x)
τdF (τ).

Given that Hγ(x) = e−vγ(x) by assumption of Theorem 1, this can be written as

Hγ,P (x) =

∫ ∞

0

e−vγ(x)τdF (τ) = P0(vγ(x)).

This completes the proof of Theorem 1. Q.E.D.

Lemma 5 is a known result, but we present a simple proof here for completeness.34

LEMMA 5: Suppose that N(θ) is a random variable with mixed Poisson distribution Pn

with mean θ and mixing distribution F . In the limit as θ →∞, the random variable N(θ)/θ
converges in probability to the random variable X with distribution F.

PROOF: Suppose that N τ (θ) is a Poisson distributed random variable with mean θτ for
some τ > 0. Now consider the random variable Z =N τ (θ)/θ, where E[Z] = τ and V ar(Z) =
θτ/θ2 = τ/θ. By Chebyshev’s inequality, for any ϵ > 0 we have

Pr(|Z −E[Z]| ≥ ϵ) = Pr(|N τ (θ)/θ− τ | ≥ ϵ)≤ V ar(Z)

ϵ2
=

τ

θϵ2
.

If N(θ) is a mixed Poisson random variable with mean θ and X denotes the random variable
with mixing distribution F , then

lim
θ→∞

Pr(|N(θ)/θ−X| ≥ ϵ) = lim
θ→∞

∫ ∞

0

Pr(|N τ (θ)/θ− τ | ≥ ϵ)dF (τ)

≤ lim
θ→∞

1

θϵ2

∫ ∞

0

τdF (τ) = 0.

Thus limθ→∞Pr(|N(θ)/θ−X| ≥ ϵ) = 0, so N(θ)/θ converges in probability to X . Q.E.D.

B.2. Proof of Theorem 2

PROOF OF THEOREM 2: Suppose the underlying distribution G is an extreme value dis-
tribution with cdf G(x) = P0(vγ(x)) for some mixed Poisson search technology Pn and
γ ∈R. Let X1, . . . ,Xn be i.i.d. random variables with distribution G given by the cdf G(x) =
P0(vγ(x)). Define the random variable Mn ≡max{X1, . . . ,Xn}. Recall that Hγ(x) = e−vγ(x)

where vγ(x)≡ (1 + γx)−1/γ if γ ̸= 0 and vγ(x)≡ e−x if γ = 0.
The following useful result is Theorem 1.2.1 from de Haan and Ferreira (2006).

34For closely related results in the literature, see Adell and de la Cal (1993) and Kuba and Panholzer (2016).
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THEOREM—(de Haan and Ferreira, 2006): A distribution G is in the domain of attraction
of the distribution Hγ if

(i) For γ > 0, we have

lim
t→x̄

1−G(tx)

1−G(t)
= x−1/γ for all x > 0.

(ii) For γ < 0, we have

lim
t→0

1−G(x̄− tx)

1−G(x̄− t)
= x−1/γ for all x > 0.

(iii) For γ = 0, there exists some positive function f > 0 such that

lim
t→x̄

1−G(t+ xf(t))

1−G(t)
= e−x for all x ∈R.

We can now prove Theorem 2 as follows. If γ > 0, then x̄=+∞ and we have

lim
t→∞

1−G(tx)

1−G(t)
= lim

t→∞

1− P0((1 + γtx)−1/γ)

1− P0((1 + γt)−1/γ)
.

Applying L’Hôpital’s rule, and using Lemma 4, it is straightforward to verify that

lim
t→∞

1− P0((1 + γtx)−1/γ)

1− P0((1 + γt)−1/γ)
= lim

t→∞
x

(
1 + γtx

1 + γt

)−1/γ−1

= x−1/γ .

If γ < 0, then x̄ is finite and we have

lim
t→0

1−G(x̄− tx)

1−G(x̄− t)
= lim

t→0

1− P0((1 + γ(x̄− tx))−1/γ)

1− P0((1 + γ(x̄− t))−1/γ)
.

Applying L’Hôpital’s rule, and using the fact limx→x̄G(x) = limx→x̄P0(vγ(x)) = 1,

lim
t→0

1− P0((1 + γ(x̄− tx))−1/γ)

1− P0((1 + γ(x̄− t))−1/γ)
= lim

t→0
x

(
1 + γ(x̄− tx)

1 + γ(x̄− t)

)−1/γ−1

= x−1/γ .

If γ = 0, then x̄=+∞ and we have

lim
t→∞

1−G(t+ xf(t))

1−G(t)
= lim

t→∞

1− P0(vγ(t+ xf(t))

1− P0(vγ(t))
= lim

t→∞

1− P0(e
−(t+xf(t)))

1− P0(e
−t)

. (14)

Define the required function f by

f(t)≡

∫ x̄

t

(1−G(s))ds

1−G(t)
.

Applying L’Hôpital’s rule to (14), and using Lemma 4 plus the fact that

lim
z→0

−P
′

0(z)z

1− P0(z)
= 1
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by L’Hôpital’s rule, we obtain limt→x̄ f(t) = 1, limt→x̄ f
′(t) = 0, and the following:

lim
t→∞

1− P0(e
−(t+xf(t)))

1− P0(e
−t)

= lim
t→∞

e−xf(t)(1 + xf ′(t)) = e−x.

Therefore, for any γ ∈ R, the distribution G is in the domain of attraction of the extreme
value distribution Hγ(x) = e−vγ(x) when the number of draws n is fixed.

Now suppose that N(θ) is a random variable with the same mixed Poisson distribution Pn

and mean θ. Define MN(θ) ≡ max{X1, . . . ,XN(θ)}. By Theorem 1, there exist normalizing
constants aθ , bθ such that the sequence of normalized random variables ZN(θ) = aθMN(θ) + bθ
converges in distribution as θ→∞ to Hγ,P (x) = P0(vγ(x)). Therefore, the distribution G lies
in its own domain of attraction, i.e. we have Hγ,P (x) = P0(vγ(x)) =G(x). Q.E.D.

B.3. Proof of Corollary 3

PROOF OF COROLLARY 3: Suppose that Hγ,P (x) = P0(vγ(x)) for some mixed Poisson
search technology Pn and some underlying distribution G with tail index γ ∈ R. If H ′′

γ,P (x)
exists and H ′

γ,P (x)> 0, then we can apply Theorem 1.1.8 in de Haan and Ferreira (2006).
Suppose that Hγ,P has tail index equal to γH . By Definition 1, this implies that H ′′

γ,P (x)
must exist.35 To verify that H ′

γ,P (x)> 0, differentiating Hγ,P (x) = P0(vγ(x)) yields

H ′
γ,P (x) = P ′

0(vγ(x))v
′
γ(x).

We have P ′
0(z)< 0 by Lemma 4 and v′

γ(x)< 0, so H ′
γ,P (x)> 0. We can now apply Theorem

1.1.8 in de Haan and Ferreira (2006), which says Hγ,P is in the domain of attraction of HγH

where HγH (x) = e−vγH (x) if the number of draws is fixed. Therefore, our Theorem 1 tells us
that Hγ,P is in the domain of attraction of HγH ,P if the number of draws is random and given
by the search technology Pn. Next, our Theorem 2 says that Hγ,P lies is in its own domain of
attraction when the number of draws is random and given by the search technology Pn.

Therefore, Hγ,P is in the domain of attraction of both HγH ,P and Hγ,P . As discussed in
de Haan and Ferreira (2006), domains of attraction are unique, which implies that γH = γ.

Q.E.D.

APPENDIX C: PROOFS FOR SECTION 5

C.1. Proof of Theorem 3

We provide two alternative proofs of Theorem 3. The first proof is simpler and formalizes
the heuristic proof in the main text using the existing Poisson result from Mangin (2024). This
proof does not require the assumption regarding boundedness of ζ over any closed interval
stated in Assumption 3.

The second proof is less intuitive but establishes the result in Theorem 3 without using the
Poisson result from Mangin (2024), although it does require the condition in Assumption 3
regarding boundedness of ζ over any closed interval.

35In order for Hγ,P to have tail index γH ∈ R by Definition 1, it is necessary (but not sufficient) that Hγ,P is
twice-differentiable. This will be true if P0 is twice-differentiable, which is true for any θ > 0 by Lemma 4.
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SIMPLE PROOF OF THEOREM 3: Theorem 3 can be expressed in the following way:

lim
θ→∞

EHP
[ζ(x)]

ζ

(
G−1

(
1− 1

θ

)) =Γ(ρ+ 1)EF [X
−ρ].

Using the fact that EHP
[ζ(x)] =

∫∞
0

EHτ [ζ(x)]dF (τ), this is equivalent to

lim
θ→∞

∫ ∞

0

EHτ [ζ(x)]

ζ

(
G−1

(
1− 1

θ

))dF (τ) = Γ(ρ+ 1)EF [X
−ρ]

where Hτ (x;θ)≡HP (x;θ|τ). Rearranging the left-hand side, we can write

lim
θ→∞

∫ ∞

0

EHτ [ζ(x)]

ζ

(
G−1

(
1− 1

θ

))dF (τ) = lim
θ→∞

EH1
[ζ(x)]

ζ

(
G−1

(
1− 1

θ

)) ∫ ∞

0

EHτ [ζ(x)]

EH1
[ζ(x)]

dF (τ).

By the mixed Poisson assumption, the distribution Pn conditional on type τ is Poisson with
mean θτ . Therefore, we can use Theorem B1 in Mangin (2024) for the Poisson special case,
which implies the following:

EHτ [ζ(x)]∼θ→∞ ζ

(
G−1

(
1− 1

θτ

))
Γ(ρ+ 1). (15)

Applying the above result (15) for τ = 1, we get

lim
θ→∞

∫ ∞

0

EHτ [ζ(x)]

ζ

(
G−1

(
1− 1

θ

))dF (τ) = Γ(ρ+ 1) lim
θ→∞

∫ ∞

0

EHτ [ζ(x)]

EH1
[ζ(x)]

dF (τ).

By (3), we have Hτ (x;θ) = e−θτ(1−G(x)). Defining k(θτ)≡ EHτ [ζ(x)], we have

lim
θ→∞

k(θτ)

k(θ)
= lim

θ→∞

EHτ [ζ(x)]

EH1
[ζ(x)]

= lim
θ→∞

ζ

(
G−1

(
1− 1

θτ

))
ζ

(
G−1

(
1− 1

θ

)) = τ−ρ

where k(t) ∈ RV ∞
−ρ. Defining ϕθ(τ) ≡ k(θτ)

k(θ)
, our result follows immediately from Lemma 6

because Lemma 6 implies that

lim
θ→∞

∫ ∞

0

EHτ [ζ(x)]

EH1
[ζ(x)]

dF (τ) =

∫ ∞

0

lim
θ→∞

EHτ [ζ(x)]

EH1
[ζ(x)]

dF (τ) = EF [X
−ρ].

Q.E.D.

LEMMA 6: If the distribution of types F has minimum type τ ≥ 0, then

lim
θ→∞

∫ ∞

0

ϕθ(τ)dF (τ) =

∫ ∞

0

lim
θ→∞

ϕθ(τ)dF (τ). (16)
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PROOF: By the dominated convergence theorem, it suffices to prove there exists a function
g(τ) such that |ϕθ(τ)| ≤ g(τ) for F -almost all τ and

∫∞
0

g(τ)dF (τ)<∞. Given that k(t) ∈
RV ∞

−ρ, we can apply Potter’s theorem (Theorem 1.5.6 in Bingham et al. (1987)), which says
that, for any A> 1 and ε > 0, there exists θ(A,ε) such that

k(y)

k(x)
≤Amax

{(y
x

)−ρ+ε

,
(y
x

)−ρ−ε
}

for any x, y ≥ θ(A,ε). Consider any τ > 0. Letting y = θτ and x = θ, we have ϕθ(τ) ≤
Amax{τ−ρ+ε, τ−ρ−ε} for x, y ≥ θ(A,ε). Given ε > 0, define g(τ) =A(τ−ρ+ε + τ−ρ−ε).

By Potter’s theorem, we have ϕθ(τ) ≤ g(τ) for θ sufficiently large that θ ≥ θ(A,ε) and
θτ ≥ θ(A,ε). Since k is positive, we have |ϕθ(τ)| ≤ g(τ) for any τ > 0. If τ > 0, this is
clearly sufficient. If τ = 0, we have |ϕθ(τ)| ≤ g(τ) for F -almost all τ because F is continuous
and there is no mass point at zero. Given that we assume that EF [X

s] is finite for all s in a
neighborhood of −ρ, we have

∫∞
0

g(τ)dF (τ)<∞ and (16) is proven. Q.E.D.

PROOF OF THEOREM 3: Defining k :R+ → [0,1] by k(z) =−P ′
0(z), we have

hP (x;θ) = g(x)θk(θ(1−G(x))).

Therefore, we have∫ x̄

x

ζ(x)hP (x;θ)dx=

∫ ∞

x

ζ(x)g(x)θk(θ(1−G(x)))dx. (17)

For any given θ, the integral on the right-hand side of (17) is finite because Assumption 3 says
that

∫ x

x
|ζ(x)g(x)|dx <∞ and k :R+ → [0,1]. Letting x=G−1

(
1− 1

t

)
, we obtain∫ x̄

x

ζ(x)hP (x;θ)dx=

∫ ∞

1

k

(
θ

t

)
θ

t
ζ

(
G−1

(
1− 1

t

))
dt

t
.

Define k0 :R+ →R+ by k0(z)≡ zk(z) and define ζ̃ : [0,∞)→R by ζ̃(t) = ζ
(
G−1

(
1− 1

t

))
for t ∈ [1,∞) and ζ̃(t) = 0 for t ∈ [0,1). We can thus write:∫ x̄

x

ζ(x)hP (x;θ)dx=

∫ ∞

0

k0

(
θ

t

)
ζ̃(t)

dt

t
.

Rewriting the above, we have
∫ x̄

x
ζ(x)hP (x;θ)dx= (k0

M∗ ζ̃)(θ) where (ϕ
M∗ f)(θ) denotes the

Mellin convolution of ϕ and f , evaluated at θ, defined by

(ϕ
M∗ f)(θ)≡

∫ ∞

0

ϕ

(
θ

t

)
f(t)

dt

t
.

We now apply Theorem 4.1.6 from Bingham et al. (1987), which was originally proved in
Arandelovic (1976). This result says that if (i) f : [0,∞)→R is measurable, (ii) f(t) ∈RV ∞

υ ,
(iii) there exists σ, τ ∈ R such that υ ∈ (σ, τ) and for all s ∈ [σ, τ ], the Mellin transform of ϕ
(defined by ϕ̆(−s) ≡

∫∞
0

t−s−1ϕ(t)dt) is finite, and (iv) f(t)/tσ is bounded on (0, t] for any
t > 0, then

( ϕ
M∗ f)(θ)∼θ→∞ ϕ̆(−υ)f(θ).
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We verify that the conditions for applying this theorem hold when f = ζ̃ , υ = −ρ, and
ϕ= k0. (i) By Assumption 3, we know ζ is measurable, so ζ̃ is measurable. (ii) By assumption,
ζ(G−1(1 − t)) ∈ RV 0

ρ , which implies ζ̃(t) ∈ RV ∞
−ρ since ζ̃(t) = ζ(G−1(1 − 1/t)) for t ∈

[1,∞). (iii) As shown below, the Mellin transform k̆0(−s) equals Γ(1 − s)EF (X
s). By our

assumption that EF (X
s) is finite for all s in a neighbourhood of −ρ, there exists σ, τ ∈R such

that −ρ ∈ (σ, τ) and for all s ∈ [σ, τ ], EF (X
s) is finite. Moreover, since ρ >−1 by assumption,

−ρ < 1 and therefore we can choose τ < 1 so that Γ(1 − s) is finite for all s ∈ [σ, τ ] (since
the Gamma function is finite over (0,∞)). Thus, k̆0(−s) = Γ(1− s)EF (X

s) is finite for all
s ∈ [σ, τ ]. (iv) Since ζ̃(t) = 0 for all t < 1, (iv) is equivalent to boundedness of ζ̃ on any
interval [1, t] for t > 1 (because t−σ is bounded on any such interval). By definition of ζ̃ , this
is equivalent to boundedness of ζ on every closed interval [x,x], which is assumed to be true
by Assumption 3.

Applying Theorem 4.1.6 from Bingham et al. (1987), we obtain

(k0

M∗ ζ̃)(θ)∼θ→∞ k̆0(ρ)ζ̃(θ).

Therefore, given that k̆0(ρ) =
∫∞
0

tρk(t)dt and ζ̃(θ) = ζ
(
G−1

(
1− 1

θ

))
, we have∫ x̄

x

ζ(x)hP (x;θ)dx∼θ→∞ ζ

(
G−1

(
1− 1

θ

))∫ ∞

0

tρk(t)dt.

Since k(t) =−P ′
0(t), we have

∫∞
0

tρk(t)dt=−
∫∞
0

tρP ′
0(t)dt.

Using Lemma 4, we obtain the following:

−
∫ ∞

0

ta−1P ′
0(t)dt=

∫ ∞

0

ta−1

∫ ∞

0

ue−tudF (u)dt.

Finally, we perform the change of variables v = tu to get∫ ∞

0

ta−1

∫ ∞

0

ue−tudF (u)dt=

∫ ∞

0

(v/u)a−1

∫ ∞

0

e−vdF (u)dv

=

∫ ∞

0

va−1e−vdv

∫ ∞

0

u1−adF (u),

which equals Γ(a)EF (X
1−a) by definition. Setting a= ρ+ 1, Theorem 3 is proven. Q.E.D.

The following lemma is useful for applying Theorem 3. See Lemma 1 and Lemma A1 in
Gabaix et al. (2016) and Proposition 1.5.7 in Bingham et al. (1987).

LEMMA 7—Regular Variation: If the distribution G is well-behaved with tail index γ < 1,
(i) We have g(G−1(1− t)) ∈RV 0

ρ where ρ= γ + 1.
(ii) If x=∞, then G−1(1− t) ∈RV 0

ρ where ρ=−γ.
(iii) If x <∞, x−G−1(1− t) ∈RV 0

ρ where ρ=−γ.
(iv) If k(t) ∈RV 0

ρ1
then k(t)α ∈RV 0

ρ where ρ= αρ1 for any α ∈R.
(v) If k1(t) ∈RV 0

ρ1
and k2(t) ∈RV 0

ρ2
then k1(t)k2(t) ∈RV 0

ρ where ρ= ρ1 + ρ2.
(vi) If k1(t) ∈RV 0

ρ1
and k2(t) ∈RV 0

ρ2
then k1(t) + k2(t) ∈RV 0

ρ where ρ=max{ρ1, ρ2}.
(vii) We have k(t) ∈RV 0

ρ if and only if k̂(t)≡ k(1/t) ∈RV ∞
−ρ.
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APPENDIX D: PROOFS FOR APPLICATIONS

D.1. Proof of Proposition 1

PROOF OF PROPOSITION 1: This result follows directly from Lemma 8 together with the
more general Proposition 4, which holds for any mixed Poisson search technology. Q.E.D.

PROPOSITION 4—Aggregate Productivity: If Pn is mixed Poisson, the distribution of ideas
G has tail index γ ∈ [0,1) and x̄=∞, and Assumption 4 holds for ρ=−γ, then

(i) Aggregate productivity is given by

yP (θ)∼θ→∞ G−1

(
1− 1

θ

)
Γ(1− γ) EF [X

γ ].︸ ︷︷ ︸
effect of R&D heterogeneity

(ii) If γ ∈ (0,1), then yP (θ) is decreasing in a mean-preserving spread of F .
(iii) If γ = 0, then yP (θ) is not affected by a mean-preserving spread of F .

PROOF: It is clear that ζ satisfies Assumption 3 because
∫ x

x
|xg(x)|dx is finite by Assump-

tion 1. Moreover, since we assume x=∞, Lemma 7 implies that we have G−1(1− t) ∈RV 0
ρ

where ρ=−γ and γ is the tail index of G. Finally, ρ >−1 because γ < 1. Parts (ii) and (iii)
follow from Corollary 4. Q.E.D.

LEMMA 8: If Pn is negative binomial with parameter r ∈N \ {0} where r >−γ, then

EF [X
γ ] =

r−γΓ(r+ γ)

Γ(r)
. (18)

(i) If γ ∈ (0,1), then EF [X
γ ] is decreasing in 1/r.

(ii) If γ ∈ [−1,0), then EF [X
γ ] is increasing in 1/r.

PROOF: The mixing distribution F is a gamma distribution given by F (x) = γ(r,rx)

Γ(r)
and it is

known that EF [X
−ρ] = rρΓ(r−ρ)

Γ(r)
. Expression (18) follows by setting ρ=−γ. To prove parts (i)

and (ii), we can apply Corollary 4. We need only show that an increase in 1/r or equivalently
a decrease in r is a mean-preserving spread of the distribution F .

Let r ∈N \ {0} and let Fr(x) denote γ(r,rx)

Γ(r)
. We need to show that Fr is a mean-preserving

spread of Fr+k for any k ≥ 1. Given that Fr and Fr+k have the same mean, it suffices to
prove that Fr and Fr+k have a single crossing, i.e. that there exists x∗ ∈ (0,∞) such that
Fr+k(x)≤ Fr(x) for all x < x∗ and Fr+k(x)≥ Fr(x) for all x > x∗.

For any given k ≥ 1, we have Fr+k(x)≤ Fr(x) if and only if

ϕk(r,x)≡ γ(r+ k, (r+ k)x)− Γ(r+ k)

Γ(r)
γ(r, rx)≤ 0.

Differentiating ϕk(r,x) using the fact that ∂
∂y
γ(s, y) = ys−1e−y , we obtain

d

dx
ϕk(r,x) = xr−1e−rx(r+ k)r+k

(
xke−kx − Γ(r+ k)

Γ(r)

rr

(r+ k)r+k

)
.

Given any k ≥ 1, it can be verified that d
dx
ϕk(r,x) = 0 at exactly two interior points.

Given that ϕk(r,0) = 0 and d
dx
ϕk(r,x) < 0 for small x > 0, plus limx→∞ ϕk(r,x) = 0 and
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limx→∞
d
dx
ϕk(r,x) < 0, there exists x∗ ∈ (0,∞) such that ϕk(r,x) < 0 for all x < x∗ and

ϕk(r,x)> 0 for all x > x∗, which gives us the desired result. Q.E.D.

D.2. Proof of Proposition 2

PROOF OF PROPOSITION 2: This result follows directly from Lemma 8 together with the
more general Proposition 5, which holds for any mixed Poisson search technology. Q.E.D.

PROPOSITION 5—Average Markup: If Pn is mixed Poisson, the distribution of utility shocks
G has tail index γ ∈ [−1,1), and Assumption 4 holds for ρ=−γ, then

(i) The average markup is given by

µP (θ)∼θ→∞
Γ(1− γ)

θg

(
G−1

(
1− 1

θ

)) EF [X
γ ].︸ ︷︷ ︸

effect of consumer heterogeneity

(ii) If γ ∈ (0,1), the markup µP (θ) is decreasing in a mean-preserving spread of F .
(iii) If γ ∈ [−1,0), the markup µP (θ) is increasing in a mean-preserving spread of F .
(iv) If γ = 0, the markup µP (θ) is not affected by a mean-preserving spread of F .

PROOF: First, ζ = 1−G
g

satisfies Assumption 3. Moreover ζ(G−1(1−t)) = 1−G(G−1(1−t))

g(G−1(1−t))
=

t
g(G−1(1−t))

∈ RV 0
ρ where ρ=−γ because t ∈ RV 0

1 and g(G−1(1− t)) ∈ RV 0
γ+1 by Lemma

7. Finally, ρ >−1 since γ < 1. Parts (ii), (iii), (iv) follow from Corollary 4. Q.E.D.

D.3. Proof of Proposition 3

PROOF OF PROPOSITION 3: We can use Proposition 6 to prove Proposition 3. Proposition
6 holds for any mixed Poisson search technology, not just the power law family. Part (i) of
Proposition 3 follows from Proposition 6 plus the fact that EF [X

k] = (1−λ)k

1−kλ
. For part (ii), an

increase in λ is a mean-preserving spread of F , so Corollary 4 applies. Part (iii) is clear. Q.E.D.

PROPOSITION 6—Average Outcome: If Pn is mixed Poisson, the distribution of initial study
effort G has tail index γ ∈ [0,1) and x̄=∞, and Assumption 4 holds for ρ=−γβ, then

(i) The average student outcome is given by

ϕP (θ)∼θ→∞ b

(
G−1

(
1− 1

θ

))β

Γ(1− βγ) EF [X
γβ].︸ ︷︷ ︸

effect of popularity heterogeneity

(ii) If γ ∈ (0,1), then ϕP (θ) is decreasing in a mean-preserving spread of F .
(iii) If γ = 0, then ϕP (θ) is not affected by a mean-preserving spread of F .

PROOF: It is clear that ζ = ϕ satisfies Assumption 3 since we assume that
∫ x

x
|ϕ(x)g(x)|dx

is finite. Moreover, because x = ∞, Lemma 7 implies G−1(1 − t) ∈ RV 0
−γ where γ is

the tail index of G. Therefore, we have limt→0
G−1(1−at)

G−1(1−t)
= a−γ and hence we obtain

limt→0
ϕ(G−1(1−at))

ϕ(G−1(1−t))
= limt→0

(
G−1(1−at)

G−1(1−t)

)β

= a−βγ , so we have ϕ(G−1(1 − t)) ∈ RV 0
ρ

where ρ = −γβ. Also, we have ρ > −1 if and only if −γβ > −1 or β < 1/γ, which we
assume. Finally, parts (ii) and (iii) follow directly from Corollary 4. Q.E.D.
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APPENDIX E: INVARIANT SEARCH TECHNOLOGIES

A search technology Pn is invariant, as defined in Lester et al. (2015), if and only if Defini-
tion 3 holds.36 In Lemma 1, we showed that mixed Poisson search technologies satisfy the key
property (19) in Definition 3. Also, by Lemma 4, we know that P0 is continuous and infinitely
differentiable for any θ > 0. Therefore, any mixed Poisson search technology is invariant.

DEFINITION 3—Invariance: A search technology Pn is invariant if, for all y ∈ [0,1],

∞∑
n=0

Pn(θ)y
n = P0(θ(1− y)) (19)

where EP [N(θ)] = θ and P0 :R+ → [0,1] is continuous and infinitely differentiable for θ > 0.

Remarkably, the opposite is also true: any invariant search technology can be represented as
a mixed Poisson distribution for some distribution F with EF [X] = 1. This result is due to Cai
et al. (2025). We use Lemma 9 to derive this result here.

LEMMA 9—Laplace Transform: If Pn is an invariant search technology with mean θ,

P0(θ) =

∫ ∞

0

e−θτdF (τ)

for some probability distribution with cdf F and mean EF [X] = 1.

PROOF: If Pn is invariant, then P0 is continuous and infinitely differentiable. Moreover,
as shown in Cai et al. (2025), we have (−1)kP (k)

0 (z) ≥ 0 for all k ∈ N and z ∈ R+ where
P (k)

0 (z) is the k−th derivative of P0(z). Therefore, P0 is a completely monotone function.
By the Bernstein-Widder theorem, there exists a Laplace transform representation given by
P0(θ) =

∫
e−θτdF (τ) for some finite measure F on R+. Because P0(0) = 1 by Definition 3,

it follows that F must be a probability measure. Also, the mean of F equals one. To see this,
we have the following expression for the k−th derivative:

P (k)
0 (θ) = (−1)k

∫
τke−θτdF (τ). (20)

Setting k = 1, we obtain P ′
0(0) =−

∫
τdF (τ). Finally, P ′

0(0) =−1 so
∫
τdF (τ) = 1. Q.E.D.

The following corollary of Lemma 9 is again due to Cai et al. (2025).

COROLLARY 6—Invariance implies Mixed Poisson: If Pn is an invariant search technol-
ogy, then it is a mixed Poisson distribution for some distribution with cdf F and EF (X) = 1.

PROOF: From Lester et al. (2015), we know Pn satisfies Definition 3 if and only if

Pn(θ) =
(−1)nθnP (n)

0 (θ)

n!
.

Using (20) for the k−th derivative, and setting k = n and θ = 0, we obtain (1). Q.E.D.

36For a discussion of the intuition behind the “invariance” property, see Lester et al. (2015).
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TABLE II

EXAMPLES OF MIXED POISSON SEARCH TECHNOLOGIES AND THEIR P0 FUNCTIONS

Distribution F Support F (τ) Search technology Pn P0(z)

Degenerate {1} 1 Poisson e−z

Gamma (r > 0) [0,∞)
γ(r, rτ)

Γ(r)
negative binomial

(
r

r+ z

)r

Exponential [0,∞) 1− e−τ geometric
1

1 + z

Exponential (ρ > 0, τ ≥ 0) [τ ,∞) 1− e−ρ(τ−τ) Poisson-exponential
ρe−τz

ρ+ z

Uniform [0,1] τ Poisson-uniform
1− e−z

z

Uniform (τ > τ ≥ 0) [τ , τ ]
τ − τ

τ − τ
Poisson-uniform

e−τz − e−τz

z(τ − τ)

Pareto (α, τ > 0) [τ ,∞) 1−
(
τ

τ

)−α

power-law α(τz)αΓ(−α, τz)

Note: The distributions F listed in this table do not necessarily have means equal to one.

APPENDIX F: DYNAMIC APPLICATIONS

Suppose there is a distribution F of agent types. Agent types are permanent. Assume the
number of draws received by an agent of type τ at time t ∈ {1,2, . . . , T} is a Poisson random
variable with parameter τθt. If we assume EF [X] = 1, Lemma 10 tells us that the cumulative
number of draws for any agent at time T is given by a mixed Poisson distribution with mean
θ̂T =

∑T

t=1 θt and the same distribution of types F .37 In dynamic settings where agents can
accumulate draws over time, we can therefore apply our asymptotic results in the limit as
T →∞ provided that θ̂T →∞ in this limit.38

LEMMA 10—Mixed Poisson Result for Dynamic Applications: Suppose agents have per-
manent types τ drawn from a distribution F with EF [X] = 1. If the number of draws an agent
of type τ receives from the underlying distribution G at time t ∈ {1,2, . . . , T} is a Poisson
random variable with mean τθt where θt ∈ R+, the random variable N̂T equal to the total
number of draws an agent receives during periods t ∈ {1,2, . . . , T} is a mixed Poisson random
variable with mean θ̂T ≡

∑T

t=1 θt and mixing distribution equal to the type distribution F .

PROOF: Suppose the number of draws N τ
t received by an agent of type τ in period t ∈

{1,2, . . . , T} is a Poisson random variable with parameter τθt. Consider the total number of

37The result still holds if EF [X] = µ, but the mixed Poisson distribution has mean µθ̂T .
38In particular, we obtain θ̂T →∞ and we can apply our asymptotic results in the limit as T →∞ if and only if

limT→∞ θ̂T = limT→∞
∑T

t=1 θt =+∞. For example, θt = θ for all t.
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draws N̂ τ
T ≡

∑T

t=1N
τ
t received by an agent of type τ in any period up to and including T . It

is well known that the finite sum of Poisson random variables is Poisson with mean equal to
the sum of the means. Therefore, we know that N̂ τ

T is a Poisson random variable with mean
τ θ̂T where θ̂T ≡

∑T

t=1 θt. Now let Nt denote the number of draws received by an agent in
period t ∈ {1,2, . . . , T} and define N̂T ≡

∑T

t=1Nt. The distribution of types τ has cdf F , so
Pr(N̂T = 0) =

∫
e−τθ̂T dF (τ). It follows that Assumption 2 holds and N̂T is a mixed Poisson

random variable with mean θ̂T and mixing distribution F . Q.E.D.

APPENDIX G: GENERALIZATION OF RESULT IN JONES (2023)

We adopt the approach in Jones (2023) to derive a general result regarding the asymptotic
behavior of the maximum for any underlying distribution. We then use this result to derive the
extreme value distribution for the Pareto example. We first present the analogous result in Jones
(2023) and then show how this result generalizes to our environment.

G.1. Fixed Number of Draws

Let X1, . . . ,Xn be i.i.d. draws from an underlying distribution G where n≥ 1. Defining the
random variable Mn ≡max{X1, . . . ,Xn}, we have Pr(Mn ≤ x) =G(x)n.

Now define a new random variable, M̂n ≡ n(1−G(Mn)). As Jones (2023) shows,

Pr(M̂n ≤ y) = 1−
(
1− y

n

)n

. (21)

Taking the limit as n→∞ delivers the result in Jones’ Theorem 1,

Pr(M̂n ≥ y) = e−y.

Suppose that G is Pareto, i.e. G(x) = 1− x−1/γ . Because M̂n is asymptotically exponen-
tially distributed, we have n(1−G(Mn)) = ε+ op(1) where ε is a random variable with cdf
1− e−y . Therefore, Mn = nγ(ε+ op(1))

−γ and, for n large, Mn ≈ nγε−γ . Defining ε̃≡ ε−γ ,

it is straightforward to verify that Pr(ε̃≤ x) = e−x−1/γ
. We thus obtain the well-known result

that the extreme value distribution is Fréchet:

Hγ(x) = e−x−1/γ

.

G.2. Random Number of Draws

Suppose the number of draws is a random variable N(θ) with mean θ and mixed Poisson
distribution Pn. Define a random variable, MN(θ) ≡ max{X1, . . . ,XN(θ)}. For consistency
with Jones (2023), this is defined only for N(θ)≥ 1. Using Lemma 3, we obtain

Pr(MN(θ) ≤ x) =
P0(θ(1−G(x)))− P0(θ)

1− P0(θ)
.

Now define a new random variable, M̂N(θ) ≡ θ(1−G(MN(θ))). Analogously to (21),

Pr(M̂N(θ) ≤ y) = 1−Pr
(
MN(θ) ≤G−1

(
1− y

θ

))
.

Combining these, we obtain Theorem 4, which generalizes Corollary 1 in Jones (2023).
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THEOREM 4: Suppose N(θ) is a random variable with mixed Poisson distribution Pn and
mean θ. Let MN(θ) denote the maximum value from N(θ)≥ 1 independent draws from a dis-
tribution G and define M̂N(θ) ≡ θ(1−G(MN(θ))). For y ≥ 0, we have

Pr(M̂N(θ) ≥ y) =
P0(y)− P0(θ)

1− P0(θ)
.

In the limit as θ→∞, we have limθ→∞Pr(M̂N(θ) ≥ y) = P0(y).

Suppose that G is Pareto, i.e. G(x) = 1− x−1/γ . For large θ, Theorem 4 implies M̂N(θ) =
εP + op(1) where εP is a random variable with cdf 1− P0(y). Therefore, MN(θ) = θγ(εP +

op(1))
−γ and, for large θ, we have MN(θ) ≈ θγε−γ

P . Defining ε̃P ≡ ε−γ
P , we have Pr(ε̃P ≤

x) = P0(x
−1/γ). We obtain the following extreme value distribution:

Hγ,P (x) = P0(x
−1/γ). (22)

Theorem 4 thus delivers an alternative derivation of expression (6) in Section 3.39
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MANGIN, SEPHORAH AND PETR SEDLÁČEK (2018): “Unemployment and the Labor Share,” Journal of Monetary

Economics, 94, 41–59. [3]
MARTELLINI, PAOLO AND GUIDO MENZIO (2020): “Declining Search Frictions, Unemployment, and Growth,”

Journal of Political Economy, 128 (12), 4387–4437. [2]
MELITZ, MARC J. (2003): “The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productiv-

ity,” Econometrica, 71 (6), 1695–1725. [17]
NEWMAN, MARK EJ, STEVEN H STROGATZ, AND DUNCAN J WATTS (2001): “Random Graphs with Arbitrary

Degree Distributions and their Applications,” Physical Review E, 64 (2), 026118. [24]
OBERFIELD, EZRA (2018): “A Theory of Input–Output Architecture,” Econometrica, 86 (2), 559–589. [2, 3]
PERLOFF, JEFFREY M AND STEVEN C SALOP (1985): “Equilibrium with Product Differentiation,” The Review of

Economic Studies, 52 (1), 107–120. [21]
RESNICK, SIDNEY I. (1987): Extreme Values, Regular Variation, and Point Processes, Springer. [14]
RHODES, ANDREW AND JIDONG ZHOU (2024): “Personalized Pricing and Competition,” American Economic Re-

view, 114 (7), 2141–70. [21]
SATTINGER, MICHAEL (1984): “Value of an Additional Firm in Monopolistic Competition,” The Review of Economic

Studies, 51 (2), 321–332. [21]
SCHILLING, RENÉ L, RENMING SONG, AND ZORAN VONDRACEK (2012): Bernstein Functions: Theory and Ap-

plications, De Gruyter. [28]
SMITH, RICHARD L (1984): “Threshold Methods for Sample Extremes,” in Statistical Extremes and Applications,

Springer, 621–638. [3]


	Introduction
	Preliminaries
	Mixed Poisson Class of Search Technologies
	Useful Properties of Mixed Poisson Distributions
	Asymptotic Dispersion of Search Technology
	Distribution of the Maximum
	Examples

	Preview: Pareto Example
	Fixed Number of Draws
	Random Number of Draws

	Extreme Value Distribution
	Fixed Number of Draws
	Random Number of Draws
	Examples

	Extreme Value Outcomes
	Fixed Number of Draws
	Random Number of Draws
	Heuristic Proof
	Effect of Heterogeneity
	Examples

	Application: Aggregate Productivity
	Environment
	Results
	Example: Fat-Tailed Distribution of Ideas

	Application: Markups
	Environment
	Results
	Example: Uniform Distribution of Utility Shocks

	Application: Peer Effects in Social Networks
	Environment
	Results
	Example: Fat-Tailed Distribution of Effort

	Conclusion
	Appendix A: Proofs for Section 2
	Appendix B: Proofs for Section 4
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 3

	Appendix C: Proofs for Section 5
	Proof of Theorem 3

	Appendix D: Proofs for Applications
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	Appendix E: Invariant Search Technologies
	Appendix F: Dynamic Applications
	Appendix G: Generalization of Result in Jones (2023)
	Fixed Number of Draws
	Random Number of Draws

	References

