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Abstract
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1 Introduction

Consider a search-and-matching model in which buyers and sellers are matched

according to a frictional matching process and there is free entry on one side, e.g.

buyer entry. There are two externalities related to entry: the congestion and thick

market externalities. The former is a negative externality that arises because greater

buyer entry reduces the matching probability of each buyer. The latter is a positive

externality that arises because greater buyer entry increases the matching probability

of each seller. Hosios (1990) asked the question: When is entry constrained e¢ cient?1

The answer provided by Hosios (1990) is remarkably simple: entry is e¢ cient only

when buyers�share of the joint match surplus equals the elasticity of the matching

function with respect to buyers. This result is now widely known as the �Hosios

condition.�2 When this condition holds, markets internalize the search externalities

that arise through the frictional matching process. When it fails, markets do not

internalize these externalities, leading to ine¢ ciently high or low entry.

The Hosios condition has proven to be widely applicable across a broad range of

search-and-matching models. However, it does not guarantee e¢ ciency in settings

where the expected match output �i.e. the expected output conditional on matching

� depends on the market tightness or buyer-seller ratio.3 In such environments,

entry a¤ects not only the number of matches but also the expected match output.

An additional externality arises �which we call the output externality �that may

be positive or negative. The output externality is not internalized by the Hosios

condition: entry may be ine¢ ciently high or low when this condition holds.

This paper provides a generalization of the Hosios (1990) condition to a wide class

of dynamic search-and-matching models where the expected match output may de-

pend on the market tightness. Our simple, intuitive generalization provides a unifying

lens for understanding the e¢ ciency of entry across a broad range of models which

may appear quite di¤erent on the surface.

To see why our generalization is necessary, consider an environment with buyer

1By constrained e¢ ciency, we mean the social planner is constrained by the same frictions as the
decentralized market economy.

2This condition is sometimes called the �Hosios-Mortensen�condition. Early versions of it were
discussed in Mortensen (1982b), Mortensen (1982a), and Pissarides (1986).

3We use the term �output�because we have in mind labor markets, but the term output can be
interpreted more broadly. Similarly, we use the terms �buyers�and �sellers�but we could instead
speak more generally about �organizers�of trade and �visitors�as in Shi and Delacroix (2018).
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entry. Entry is e¢ cient only when buyers are paid their marginal contribution to the

social surplus. If the expected match output is exogenous, buyers need only be paid for

their e¤ect onmatch creation, i.e. on the number of matches, and the standard Hosios

condition applies. If the expected match output is endogenous, however, buyers must

also be compensated for their e¤ect on surplus creation, i.e. on the expected value of

the joint match surplus. A generalization of the Hosios condition is thus required.

Our main result is that entry is constrained e¢ cient only when buyers�surplus

share equals the matching elasticity plus the surplus elasticity (i.e. the elasticity of

the expected match surplus with respect to buyers). We call this simple condition

the �generalized Hosios condition�. When this condition holds, both the standard

search externalities and the output externality are internalized. Whether or not this

condition holds in a particular market depends on how prices are determined.

The importance of the generalized Hosios condition is particularly clear in search-

theoretic models of the labor market. First, the Hosios condition is used to determine

the e¢ cient level of vacancy entry and thus unemployment. In environments where

labor productivity depends on the market tightness, however, the standard Hosios

condition does not guarantee e¢ ciency. If this condition is mistakenly used to deter-

mine the e¢ cient level of vacancy entry, unemployment may be ine¢ ciently high or

low. The generalized Hosios condition is required to ensure that �rms are compen-

sated for the e¤ect of job creation on both unemployment and labor productivity.

Second, the Hosios condition is often used to calibrate models in which wages are

determined by Nash bargaining. In environments where the standard Hosios condi-

tion su¢ ces for e¢ ciency, it is possible to impose this condition (and thus e¢ ciency)

by using a Cobb-Douglas matching technology and setting �rms�bargaining parame-

ter equal to the constant matching elasticity, e.g. Shimer (2005). Importantly, the

generalized Hosios condition does not allow this calibration trick. In environments

where this condition is necessary for e¢ ciency, we cannot simply restore e¢ ciency by

a particular choice of matching technology and bargaining parameter. This is because

the surplus elasticity �unlike the matching elasticity �is always endogenous.

In this sense, the ine¢ ciencies that obtain when the generalized Hosios condition

fails are harder to eliminate. However, we �nd that it is possible to decentralize the

e¢ cient allocation through directed or competitive search.4

4See Wright, Kircher, Julien, and Guerrieri (2021) for a survey on directed or competitive search.
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Outline. Section 2 presents a simple, motivating example. Section 3 derives
our main result, the generalized Hosios condition. Section 4 presents some examples.

Section 5 discusses how to apply the condition. Section 6 concludes. The Appendix

contains omitted proofs. The Online Appendix includes a generalization of our results

to more general matching and output technologies, as well as additional examples.

2 Simple example

To motivate our question and build intuition, consider a static environment. There

is a continuum of measure v of vacancies (or ��rms�) and a continuum of measure

u of unemployed workers. All workers are ex ante identical and all �rms are ex ante

identical. Agents are risk-neutral. The market tightness is � � v=u:

Each �rm meets exactly one worker, but a worker can meet (or receive an �o¤er�

from) many �rms. A worker meets n 2 N = f0; 1; 2; :::g �rms with probability Pn(�)
where

P1
n=0 Pn(�) = 1. The meeting probability for a worker (i.e. the probability a

worker meets at least one �rm) is 1� P0(�).

After meetings occur, each worker draws an i.i.d. match-speci�c productivity x

for each �rm he meets and then chooses to work for exactly one of them.5 Match-

speci�c productivities x 2 X = fxL; xHg � R+; where xL < xH and Pr(x = xL) =

� 2 [0; 1]. Workers who are hired by a �rm produce output equal to the match-

speci�c productivity for that �rm. Workers who are not hired receive payo¤ z � 0

where z < xL, so all matches have positive surplus.

Let m(�) denote the matching probability for a worker (i.e. the probability a

worker is hired). Every worker who meets a �rm will be hired, so the matching

probability for workers equals the meeting probability, i.e. m(�) = 1 � P0(�). The

matching probability for a �rm (i.e. the probability a �rm hires a worker) is m(�)=�.

Suppose workers always choose to work for the �rm they meet with the highest

productivity.6 Let f : X ! [0; 1] be the endogenous density of the distribution of

output across employed workers where
P

x2X f(x; �) = 1. The expected match output

y(�) (i.e. expected output conditional on matching) is y(�) �
P

x2X xf(x; �). Since

5Shi (2002) presents a related model that features two-sided ex ante heterogeneity (two types of
workers and two types of �rms) and shows that directed search delivers constrained e¢ ciency.

6This will be true, for example, if wages are determined by either auctions or Nash bargaining
between a worker and their chosen �rm. We assume that workers randomize when indi¤erent.
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an employed worker produces output xL if and only if all n �rms he met drew xL,

(1) f(xL; �) =

P1
n=1 Pn(�)�

n

1� P0(�)
:

While the distribution of match-speci�c productivities is exogenous and given by

Pr(x = xL) = �, the distribution of output across employed workers is endogenous

and given by f(x; �). For any � > 0, the expected match output y(�) is strictly

increasing in �, i.e. y0(�) > 0. Intuitively, this is because a higher number of vacancies

per unemployed worker allows workers to be more selective.

Suppose the social planner can create vacancies at cost c > 0. What is the e¢ cient

level of vacancy creation? We are interested in constrained e¢ ciency in the sense

that the planner is constrained by the functions m(:) and y(:). The planner chooses

a market tightness � to maximize the social surplus, i.e. the total market output of

employed workers, plus the total payo¤ for workers who remain unemployed, minus

the total costs of vacancy creation. The social surplus per worker, 
(�), is given by

(2) 
(�) = m(�)y(�) + (1�m(�))z � c�:

The expected match surplus s(�) (i.e. expected surplus conditional on matching) is

given by s(�) = y(�)� z and we can write:

(3) 
(�) = m(�)s(�) + z � c�:

Any solution �P > 0 must satisfy the following necessary condition:

(4) m0(�)s(�) +m(�)s0(�) = c:

Let �m(�) � m0(�)�=m(�); the matching elasticity. Let �s(�) � s0(�)�=s(�), the

surplus elasticity. Rearranging (4), an optimal solution �P > 0 must satisfy

(5) �m(�)| {z }
matching elasticity

+ �s(�)| {z }
surplus elasticity

=
c�

m(�)s(�)| {z } :
�rms� surplus share

With free entry of vacancies, the total payo¤ for �rms equals the total entry cost, cv;

and the total surplus created is m(�)s(�)u, so the right term of (5) is �rms�surplus
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share.7 Intuitively, e¢ ciency requires that �rms�surplus share equals the matching

elasticity plus the surplus elasticity because this ensures that �rms�entry decisions

internalize the e¤ects of vacancy creation on both employment and labor productivity.

The original Hosios (1990) condition can be derived as a special case of (5). Sup-

pose that � = 1. The expected match output is y(�) = xL; the expected match

surplus is s(�) = xL � z, and (5) simpli�es to the Hosios (1990) condition:

(6) �m(�)| {z }
matching elasticity

=
c�

m(�)s(�)| {z } :
�rms� surplus share

In this case, it su¢ ces for e¢ ciency that �rms�surplus share equals the matching

elasticity because �rms�entry decisions need only internalize the e¤ects of vacancy

creation on employment (or number of matches).

We refer to condition (5) as the �generalized Hosios condition�. Like the original

Hosios (1990) condition given by (6), it turns out that this simple condition charac-

terizes e¢ ciency across a wide range of dynamic search-and-matching environments.

3 Generalized Hosios Condition

Consider a general dynamic environment that features buyers and sellers. Time

is discrete. In any period t 2 f0; 1; :::g, there is continuum of measure one of sellers

and a continuum of potential buyers with su¢ ciently large measure.8 All agents are

risk-neutral. The measure of buyers who enter is denoted by v. The measure of

unmatched sellers is denoted by u. The market tightness is � � v=u. Matches are

destroyed with probability � 2 (0; 1]: The �ow payo¤ for unmatched sellers is z � 0.
For simplicity, we assume all matches have positive surplus.

Buyers and sellers are matched according to a constant-returns-to-scale matching

function with matching probabilities for sellers and buyers denoted respectively by

m(�) and m(�)=�. We call the function m(:) the matching technology.

Assumption 1. The function m(:) satis�es: (i) m0(�) > 0 and m00(�) < 0 for all

� 2 R+, (ii) lim�!0m(�) = 0, (iii) lim�!0m
0(�) = 1; (iv) lim�!1m(�) = 1, (v)

7Alternatively, let sf (�) denote �rms�surplus after matching. With free entry of vacancies, we
have m(�)

� sf (�) = c, thus the right term of (5) is equivalent to sf (�)=s(�), �rms�surplus share.
8�Su¢ ciently large�means that seller entry is not constrained by the measure of potential sellers.
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lim�!1m
0(�) = 0, and (vi) m(�)=� is strictly decreasing for all � 2 R+.

Within each period, the timing is as follows. First, match destruction occurs.

Next, buyers enter and search takes place. Finally, production occurs.

Match output x 2 X � fx1; x2; :::; xNg � R+nf0g where x1 < x2 < ::: < xN .

Given market tightness �, the output of a newly matched seller is an i.i.d. draw from a

discrete probability distribution with density f : X ! [0; 1] where
P

x2X f(x; �) = 1.
9

The density f(x; �) will be determined endogenously by features of the environment.

The expected match output (i.e. expected output conditional on a match) is

(7) y(�) �
X
x2X

xf(x; �):

We call the function y(:) the output technology.10 If the density f(x; �) does not

depend on the market tightness, i.e. f(x; �) = f(x), then y(�) = �y 2 R+.
The market output of any seller in the economy (either matched or unmatched)

is given by a discrete probability distribution with density  : X [f0g ! [0; 1] whereP
X[f0g  (x) = 1. Since unmatched sellers produce zero output, we have  (0) = u.

Let  + denote the next period�s density. This is the density of the distribution of

output across all sellers at the production stage, i.e. the beginning of the next period.

The density  evolves according to the following law of motion:

(8)  +(x) =

(
u(1�m(�)) + �(1� u) for x = 0

um(�)f(x; �) + (1� �) (x) for x 2 X

Since  +(0) = u+, the measure of unmatched sellers in the next period, the �rst

case of (8) is the law of motion for unmatched sellers. The second case of (8) is the

law of motion for the measure of matched sellers producing output x 2 X.

Planner�s problem. Suppose the planner can allow buyers to enter at cost c > 0

each period. At the start of a period, the planner observes the aggregate state of

the economy, given by the density  , and chooses a market tightness � = v=u where

� 2 R+. The planner is restricted to take both the matching technology m(:) and the
9Our results also hold if the distribution of match output is continuous and bounded.
10Online Appendix A generalizes our results to matching functions M(v; u), densities f(x; (v; u)),

and output technologies y(v; u) that are not necessarily constant-returns-to-scale.
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density f(x; �) as given, and chooses the market tightness � to maximize the sum of

present and future social surplus, discounted by factor � 2 (0; 1).
The Bellman equation for the planner�s value function W ( ) can be written as:

(9) W ( ) = max
�2R+

�

(�j ) + �W ( +)

	
where  +, the next period�s state, is given by the law of motion (8), and

(10) 
(�j ) =
X
x2X

x +(x) + zu+ � c�u:

The �ow value of the social surplus, 
(�j ); is equal to the total market output of
matched sellers,

P
x2X x +(x); plus the total �ow payo¤ for unmatched sellers, zu+;

at the production stage, minus the total costs of buyer entry, cv = c�u.

Our planner�s problem generalizes that considered in Menzio and Shi (2011) to

environments where the density f(x; �) may depend on market tightness.11

Lemma 1. (i) The planner�s value function W ( ) is the unique solution to (9); and
(ii) W ( ) can be written as a linear function:

(11) W ( ) =Wuu+
X
x2X

We(x) (x);

where

(12) Wu = max
�2R+

n
�c� + (1�m(�))(z + �Wu) +m(�)(y(�) + � ~We(�))

o
and

(13) ~We(�) �
X
x2X

We(x)f(x; �)

and

(14) We(x) = �(z + �Wu) + (1� �)(x+ �We(x)):

11Theorem 1 in Menzio and Shi (2011) generalizes to our environment. More precisely, the special
case of our planner�s problem where f(x; �) = f(x) is a special case of that considered in Menzio
and Shi (2011). We abstract from features such as on-the-job search, aggregate productivity shocks,
and signals in order to focus attention on what is novel here.
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Before presenting our main result, the dynamic expected match surplus s(�) is

(15) s(�) = y(�)� z + �( ~We(�)�Wu):

Assumption 2 is su¢ cient for the existence and uniqueness of the e¢ cient choice �P .12

Assumptions 1 and 2 are maintained throughout the remainder of Section 3.

Assumption 2. The function �(:) de�ned by �(�) � m(�)s(�) satis�es: (i) lim�!0 �(�) =

0; (ii) lim�!0 �
0(�) > c; (iii) lim�!1 �

0(�) < c; and (iv) �00(�) < 0 for all � 2 R+:

Proposition 1 says that the planner chooses to set buyers�surplus share equal the

matching elasticity plus the surplus elasticity. When this condition holds, the level of

buyer entry is e¢ cient because agents are compensated for their e¤ect on both match

creation and surplus creation. Importantly, this intuitive condition characterizes ef-

�ciency along the entire equilibrium path. In the absence of aggregate productivity

shocks, the optimal market tightness is constant over time.

Lemma 1 greatly simpli�es the proof of Proposition 1.

Proposition 1 (Generalized Hosios Condition). There exists a unique e¢ cient
allocation (�Pt )

1
t=0 where �

P
t = �P > 0 for all t and �P satis�es the following condition:

(16) �m(�)| {z }
matching elasticity

+ �s(�)| {z }
surplus elasticity

=
c�

m(�)s(�)| {z } :
buyers� surplus share

Proof. Rearranging (12) from Lemma 1, the optimal �P is given by

(17) �P = argmax
�2R+

n
�c� + z + �Wu +m(�)(y(�)� z + �( ~We(�)�Wu))

o
:

Using (15), problem (17) above can be rewritten as

(18) �P = argmax
�2R+

fm(�)s(�) + z � c� + �Wug :

Taking the �rst-order condition for (18), the optimal �P satis�es

(19) m0(�)s(�) +m(�)s0(�) � c

12If Assumption 2 does not hold, (16) is still a necessary condition for e¢ ciency.
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and �P � 0 with complementary slackness. Assumption 2 implies there exists a

unique solution �P > 0 that satis�es �0(�) = c where �(�) � m(�)s(�). Therefore,

there exists a unique �P > 0 that satis�es m0(�)s(�) +m(�)s0(�) = c: Dividing both

sides of this equation by m(�)s(�)=� yields (16) in terms of elasticities. �

The following provides a useful version of the generalized Hosios condition that is

easier to apply in practice. If y0(�) = 0, we recover the standard Hosios condition.

Proposition 2. There exists a unique e¢ cient allocation (�Pt )
1
t=0 where �

P
t = �P > 0

for all t and �P satis�es the following condition:

(20) �m(�) +
y0(�)�

(1� �(1� �))s(�)
=

c�

m(�)s(�)
:

Proof. Di¤erentiating (15), we have

(21) s0(�) = y0(�) + � ~W 0
e(�):

Using (14) and de�nition (13), we obtain

(22) ~We(�) =
�(z + �Wu) + (1� �)y(�)

1� �(1� �)
:

Di¤erentiating (22) yields

(23) ~W 0
e(�) =

(1� �)y0(�)

1� �(1� �)
:

Substituting (23) into (21) and simplifying yields

(24) s0(�) =
y0(�)

1� �(1� �)
:

Finally, substituting (24) into (16) delivers condition (20). �

Output externality. In search-and-matching models with free entry, there are

two standard externalities related to the frictional matching process: the congestion

and thick market externalities. In environments where the expected match output

depends on market tightness, a novel externality �the output externality �arises. A

higher buyer/seller ratio may either increase or decrease the expected match output.
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Consider an environment in which the generalized Hosios condition is necessary

for e¢ ciency. When the standard Hosios condition holds, entry decisions fail to

internalize the output externality and entry may not be e¢ cient.

Corollary 1 tells us that the direction of the ine¢ ciency depends only on the

derivative of the output technology y(:) at the equilibrium ��.

Corollary 1. A steady state equilibrium allocation features under-entry ( over-entry)
of buyers under the standard Hosios condition if and only if y0(��) > (<) 0:

When y0(��) > 0, the output externality arising from buyer entry is positive and

the standard Hosios condition results in under-entry. Alternatively, if y0(��) < 0; the

output externality is negative and the standard Hosios condition results in over-entry.

If y0(��) = 0, there is no output externality and buyer entry is e¢ cient.

Returning to our example in Section 2, the standard Hosios condition would result

in under-entry of vacancies since y0(�) > 0 and the output externality is positive.

Intuitively, this is because it does not internalize the fact that higher job creation leads

not only to lower unemployment for workers, but also higher labor productivity.13

Seller entry. When there is seller entry at cost c > 0, instead of buyer entry, the

direction of the e¤ect of entry is reversed. Since the buyers�surplus share and the

sellers�surplus share add to one, an e¢ cient �P > 0 must satisfy

(25) 1� �m(�)| {z }
matching elasticity

� �s(�)| {z }
surplus elasticity

=
c

m(�)s(�)| {z }
sellers� surplus share

:

Corollary 2. A steady state equilibrium allocation features over-entry (under-entry)
of sellers under the standard Hosios condition if and only if y0(��) > (<) 0:

With seller entry, the direction of Corollary 1 is reversed since �� < �P implies

over-entry of sellers (because � = v=u) and �� > �P implies under-entry.

13In an alternative environment where workers instead apply to �rms, we would have y0(�) < 0. In
this case, the output externality is negative and the standard Hosios rule would result in over-entry
of vacancies. For examples in the literature, see Gavrel (2012) and Woltho¤ (2017).
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4 Examples

We present two examples. The �rst features sequential markets and bilateral

meetings. The second features many-on-one meetings and auctions with ex post buyer

heterogeneity.14 We choose these examples because they are as di¤erent as possible

�in terms of the types of heterogeneity, market structure, and meetings.

4.1 Sequential labor market and goods market

One way in which the expected match output may depend on market tightness

is through a sequential channel. This may arise when there are sequential markets,

such as a labor market and a goods market, and the possibility of trade in the second

market depends on the matching outcomes in the �rst.15 One example is Berentsen,

Menzio, and Wright (2011). We present a static, simpli�ed version of that model.16

Workers sell their labor to �rms in the labor market and then purchase goods from

�rms in the goods market. All workers search in the goods market, but only active

�rms (i.e. �lled vacancies) can trade in the goods market. The labor market tightness

a¤ects the goods market tightness by a¤ecting the measure of �rms that search in

the goods market. In turn, the goods market tightness determines the probability of

trade for both workers and �rms. This implies that the labor market tightness a¤ects

the expected match �output�because this includes both the direct match output in

the labor market and the expected gains from trade in the goods market.17

The labor market is a standard Diamond-Mortensen-Pissarides (DMP) environ-

ment with bilateral meetings. There is a continuum of measure u of unemployed

workers. The measure of vacancies is v. The labor market tightness is � = v=u: The

matching probabilities for workers and �rms respectively are m(�) and m(�)=� where

m(:) satis�es Assumption 1. There is free entry of vacancies at cost c > 0. Matches

produce direct output �y > z; where z � 0 is the value of non-market activity.
In the goods market, the probabilities of trade for workers and �rms aremG(�) and

14Online Appendix B presents an example featuring ex ante heterogeneity. See Shi (2001) for an
alternative approach to implementing constrained e¢ ciency (in the presence of ex ante heterogeneity)
which incorporates directed search and separation of agents into di¤erent submarkets.
15Petrosky-Nadeau, Wasmer, and Weil (2018) also study e¢ ciency in sequential markets.
16In particular, we eliminate the third market, the Arrow-Debreu market.
17Kaplan and Menzio (2016) shares a similar feature because sellers� expected revenue in the

product market depends on the unemployment rate and thereby on labor market tightness.
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mG(�)=� respectively, where � is the seller-buyer ratio andmG(:) satis�es Assumption

1. Since all workers (including those who remain unemployed) search but only active

�rms search, we have � = (m(�)=�)v=u = m(�) and we therefore write �(�).18

Active �rms can produce a single unit of an indivisible good at a production cost

� > 0. Unemployed workers value the good at vu > 0 and employed workers value

the good at ve > vu � �. We assume, for simplicity, that vu = �.

While there is no heterogeneity here, matches in the labor market face di¤erent

outcomes in terms of the surplus created, depending on whether or not workers trade

in the goods market. Match �output�x 2 X = f�y; �y+(ve��)g. The distribution of
output across matches has endogenous density f : X ! [0; 1] where

(26) f(x; �) =

(
1�mG(�(�)) if x = �y;

mG(�(�)) if x = �y + (ve � �):

In the �rst case, the worker fails to match and thus trade in the goods market.

The expected match output in the labor market is y(�) =
P

x2X xf(x; �) and the

expected match surplus is s(�) = y(�)� z. Applying (26), we obtain

(27) y(�) = �y|{z}
direct output

+ mG(�(�))(ve � �)| {z }
expected gains from trade

:

If Assumption 2 holds, Proposition 1 says there exists a unique e¢ cient choice

�P > 0 and it satis�es condition (16).19 Whether or not this condition holds depends

on how wages are determined. In this example, the output externality is positive, i.e.

y0(��) > 0: Since �0(�) > 0 and dmG(�)
d�

> 0, an increase in the labor market tightness

� has a positive e¤ect on the expected gains from trade in the goods market.

4.2 Many-on-one meetings and competing auctions

Another way in which the expected match output may depend on market tightness

is through a selection channel. Consider an environment that features many-on-one or

18More generally, consider a dynamic economy with match destruction rate � and measure one
of workers, measure u of whom are initially unemployed. We have �(�) = 1 � u+; the measure
of employed workers or active �rms at the end of the period. Using a standard law of motion for
unemployment, u+ = u(1�m(�))+�(1�u), we have �(�) = (1��)(1�u)+um(�): This is equivalent
to our static example in the special case where � = 1 and u = 1:
19A su¢ cient condition for Assumption 2 is �y � z > c and �m00(�)m(�)

(m0(�))2 > 2 for all � 2 R+.
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multilateral meetings (where each seller can meet many buyers) and auctions.20 Such

an environment features a selection channel because the auction mechanism enables

sellers to select the buyer with the highest valuation.

Albrecht et al. (2014) examine the e¢ ciency of seller entry in a competing auctions

environment and �nd that seller entry is e¢ cient. Although they do not explicitly

identify it, the generalized Hosios condition applies in their setting and it is the fact

that this condition holds endogenously that ensures e¢ ciency.

Consider a simple version of their model featuring identical sellers with reservation

value z = 0. Buyers are ex ante identical but heterogeneous ex post. Sellers pay a

cost c > 0 to enter and attract buyers by posting second-price auctions with reserve

prices. The buyer-seller ratio is � � v=u. Each buyer meets exactly one seller.

The probability that a seller meets n 2 N buyers is given by a Poisson distribution,
Pn(�) =

�ne��

n!
. The matching probabilities for sellers and buyers arem(�) andm(�)=�

respectively. In this example, the matching probability for sellers equals their meeting

probability, i.e. m(�) = 1� e��, which satis�es Assumption 1.

Buyers�valuations x are private information and are drawn ex post (i.e. after meet-

ings) independently from a distribution with cdf G, density g = G0 > 0; and support

X = [0; 1]. The expected valuation of a successful buyer is y(�) =
R 1
0
xf(x; �)dx

where the endogenous density f : X ! [0; 1] is given by

(28) f(x; �) =
�g(x)e��(1�G(x))

1� e��
:

If EG(x) > c, Assumption 2 holds. Seller entry is constrained e¢ cient if and only

if the equilibrium �� satis�es (25). In fact, this condition does hold and seller entry is

e¢ cient. In this example, the output externality from seller entry is negative. Since

y0(�) > 0 and � = v=u, this is a negative externality with regard to seller entry.

5 Applying the condition

We have seen two examples of environments where the generalized Hosios con-

dition is necessary for e¢ ciency. In Section 4.2, where prices are determined by

20Such environments are often described as �competing auctions�. Following Peters and Severinov
(1997), recent papers using competing auctions include Albrecht, Gautier, and Vroman (2012, 2014,
2016); Kim and Kircher (2015); Lester, Visschers, and Woltho¤ (2015); and Mangin (2017).
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auctions, entry is e¢ cient. In Section 4.1, entry may or may not be e¢ cient depend-

ing on how wages are determined. We now discuss the application of the generalized

Hosios condition in environments featuring Nash bargaining or competitive search.

5.1 Nash bargaining

Consider the example in Section 2. Suppose that wages are determined by Nash

bargaining between a worker and their chosen �rm. Workers�bargaining power is

� 2 (0; 1). With entry cost c > 0 for vacancies, the equilibrium �� > 0 satis�es:

(29)
m(�)

�
(1� �)s(�) = c;

or, equivalently, the equilibrium �� > 0 satis�es

(30) 1� �| {z }
�rms�bargaining power

=
c�

m(�)s(�)| {z }
�rms�surplus share

:

Applying the generalized Hosios condition, and using (30), entry is e¢ cient only if

(31) �m(�
�)| {z }

matching elasticity

+ �s(�
�)| {z }

surplus elasticity

= 1� �| {z }
�rms�bargaining power

:

In general, there is no reason why condition (31) should hold since � is exogenous.

Thus, entry is generically ine¢ cient if wages are determined by Nash bargaining.

Diagnosis of ine¢ ciency. Given a speci�c bargaining parameter �, how can we

determine whether or not vacancy entry is e¢ cient? In the example in Section 2,

expected match output y(�) can be interpreted as labor productivity. De�ning �y(�) �
y0(�)�=y(�), the elasticity of labor productivity with respect to market tightness, the

version of the generalized Hosios condition in Proposition 2 can be rearranged as

(32) �m(�) +

�
1

1� �(1� �)

��
y(�)

s(�)

�
�y(�) = 1� �:

We can use (32) not just for diagnosing ine¢ ciency, but also for determining the

quantitative signi�cance of the generalized Hosios condition. In particular, if the ratio

14



y(�)=s(�) is higher (lower), or the elasticity �y(�) is higher (lower), then the middle

term of (32) is quantitatively more (less) important and imposing the standard Hosios

condition would result in a greater (lesser) deviation from the e¢ cient allocation.

Implementation of e¢ ciency. In environments where the standard Hosios con-

dition holds, we have e¢ ciency of entry if and only if �m(�
�) = 1 � �. In such

environments, the choice of parameters of the matching technology can be used to

restore e¢ ciency. Suppose the matching technology is Cobb-Douglas and m(�) has

constant elasticity, i.e. �m(�) = � for all � 2 R+. We can impose the standard Hosios
condition by setting � = 1 � �. Importantly, this ensures e¢ cient entry regardless

of the equilibrium market tightness ��: While there is no reason why these two unre-

lated parameters would be equal, a large literature has used this approach to calibrate

search-theoretic models of the labor market following Shimer (2005).

Given that the surplus elasticity �s(�
�) is endogenous, it is not usually possible

to use this approach to impose the generalized Hosios condition in environments

featuring Nash bargaining. This highlights the importance of competitive search.

5.2 Competitive search

It is well-known that directed or competitive search typically decentralizes the ef-

�cient allocation in environments where the standard Hosios condition is required for

e¢ ciency. It turns out that competitive search also decentralizes the e¢ cient alloca-

tion in environments where the generalized Hosios condition is required. Intuitively,

this is because competitive search allows agents to trade o¤ prices against both the

probability of trade and the expected match surplus if trade occurs, thus internalizing

both the search externalities and the output externality.

Online Appendix B extends the competitive search (price posting) approach of

Moen (1997) to an environment where the expected match output depends on the

market tightness. Since the generalized Hosios condition holds endogenously, compet-

itive search (price posting) provides a way of decentralizing the constrained e¢ cient

allocation in environments where meetings are bilateral, such as Example 4.1. In

environments where meetings are many-on-one or multilateral, competitive search

(auctions) decentralizes the constrained e¢ cient allocation, as seen in Example 4.2.
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6 Conclusion

This paper generalizes the well-known Hosios (1990) condition that characterizes

e¢ cient entry in search-and-matching models. We extend this simple rule to dynamic

environments where the expected match output depends on the market tightness.

Such environments give rise to a novel externality � the output externality � that

is not captured by the standard Hosios condition. To ensure e¢ ciency, markets

must internalize the e¤ect of entry on both the number of matches created and the

average value created by each match. We show that this occurs precisely when buyers�

surplus share equals the matching elasticity plus the surplus elasticity. We call this

intuitive condition the �generalized Hosios condition�. When it holds, agents are fully

compensated for the e¤ect of entry on both match creation and surplus creation.

Appendix: Omitted proofs

Proof of Lemma 1. Part (i). Let 	 denote the standard simplex in R1+jXj: Let
C(	) be the set of bounded, continuous functions R : 	 ! R with the sup norm

kRk = sup 2	R( ). We can de�ne an operator T with domain C(	) by

(33) (TR)( ) = max
�2R+


(�j ) + �R( +)

where  + is given by (8) and 
 is de�ned by (10). First, TR is bounded. Consider

any function R 2 C(	): Since R is bounded, there exist R0 and �R such that R0 �
R( +) � �R for all  ̂ 2 	. Therefore, using (33) and (10), (TR)( ) is bounded below
byminfz; x1g+�R0 and above bymaxfz; xNg+� �R. Next, TR is continuous in  . To
see this, observe that since X is bounded we can replace the constraint � 2 R+ with
� 2 [0; ��] where �� � c�1u�1f[maxfz; xNg �minfz; x1g]+�[ �R�R0]g: For the modi�ed
problem, the maximand is continuous in ( ; �) and the set of feasible choices for � is

compact, so the Theorem of the Maximum implies TR is continuous in  (Theorem 3.6

in Stokey, Lucas, and Prescott, 1989). Thus, T : C(	)! C(	). It is straightforward

to verify that T satis�es Blackwell�s su¢ cient conditions for a contraction (Theorem

3.3 in Stokey et al., 1989). Therefore, T is a contraction mapping and it has exactly

one �xed point R� 2 C(	). Since limt!1 �
tR�( ) = 0 for all  2 	, R� is equal to

the planner�s function W (Theorem 4.3 in Stokey et al., 1989).
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Part (ii). De�ne a set C 0(	) � C(	) as follows. We have R 2 C 0(	) if and only if
R 2 C(	) and there exist Ru andRe : X ! R such that R( ) = Ruu+

P
x2X

Re(x) (x):

Consider any R 2 C 0(	). Substituting (8) into (10), and then substituting into the

maximand in (33) and simplifying, using the fact that 1�u =
P

x2X  (x), we obtain

(34) (TR)( ) = R̂uu+
P
x2X

R̂e(x) (x)

where R̂u is given by

(35)

R̂u = max
�2R+

�
�c� + (1�m(�))(z + �Ru) +m(�)

�
y(�) + �

P
x2X

Re(x)f(x; �)

��
;

and y(�) is given by (7), and R̂e(x) is given by

(36) R̂e(x) = �(z + �Ru) + (1� �)(x+ �Re(x)):

Therefore, we have T : C 0(	) ! C 0(	) and, since C 0(	) is a closed subset of C(	);

we have W 2 C 0(	) by Corollary 1 to Theorem 3.2 in Stokey et al. (1989). �

Proof of Corollary 1. Suppose that �m(�
�) = c��=m(��)s(��): First, (24) implies

that s0(��) > 0 if and only if y0(��) > 0: Next, we show there is under-entry (over-

entry) of buyers if and only if s0(��) > (<)0: Letting �(�) = m(�)s(�); Proposition 1

says there exists a unique e¢ cient �P > 0 that satis�es �0(�P ) = c. By assumption,

m0(��)s(��) = c and therefore �0(�P ) = m0(��)s(��). Now, �0(��) = m0(��)s(��) +

m(��)s0(��); and thus �0(�P ) = �0(��) �m(��)s0(��); so if s0(��) > 0 then �0(�P ) <

�0(��). Assumption 2 implies that �00(�) < 0 for all � 2 R+ and therefore �0(�P ) <
�0(��) implies that �� < �P . If s0(��) < 0, there is over-entry of buyers, �� > �P . �
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Online Appendix

A. Generalization of Propositions 1 & 2

Suppose that buyers and sellers are matched according to a general matching func-

tion that gives the total number of matches, M(v; u); as a function of the measure of

unmatched buyers v and the measure of unmatched sellers u. The matching proba-

bility for a seller is M(v; u)=u and the matching probability for a buyer is M(v; u)=v.

Assumption 10. The function M(:; :) satis�es: (i) @M
@v

> 0 and @2M
@v2

< 0 for all

v; u 2 R+, (ii) limv!0M(v; u) = 0, (iii) limv!0
@M
@v
= 1, (iv) limv!1M(v; u) = 1,

(v) limv!1
@M
@v
= 0, and (vi) M(v; u)=v is strictly decreasing in v.

Match output x 2 X � fx1; x2; :::; xNg � R+nf0g where x1 < x2 < ::: < xN .

Given measure v of unmatched buyers and measure u of unmatched sellers, the output

of a newly matched seller is an i.i.d. draw from a discrete probability distribution

with density f : X ! [0; 1] where
P

x2X f(x; (v; u)) = 1.

The expected match output (i.e. expected output conditional on a match) is

(37) y(v; u) �
X
x2X

xf(x; (v; u)):

The market output of any seller in the economy is given by a discrete probabil-

ity distribution with density  : X [ f0g ! [0; 1] where
P

X[f0g  (x) = 1. Since

unmatched sellers produce zero output, we have  (0) = u.

Let  + denote the next period�s density. The density  evolves according to:

(38)  +(x) =

(
u�M(v; u) + �(1� u) for x = 0

M(v; u)f(x; (v; u)) + (1� �) (x) for x 2 X:

Suppose the planner can allow buyers to enter at cost c > 0 each period. At the

start of a period, the planner observes the aggregate state of the economy, given by

the density  , and chooses a measure of entering buyers v 2 R+. The planner is
restricted to take both the matching technology M(:; :) and the output technology

y(:; :) as given, and chooses the measure of entering buyers v to maximize the sum of

present and future social surplus, discounted by factor � 2 (0; 1).
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The Bellman equation for the planner�s value function W ( ) can be written as:

(39) W ( ) = max
v2R+

�

(vj ) + �W ( +)

	
where  +, the next period�s state, is given by the law of motion (38), and

(40) 
(vj ) =
X
x2X

x +(x) + zu+ � cv:

Lemma 10. (i) The planner�s value function W ( ) is the unique solution to (39);
and (ii) W ( ) can be written as a linear function:

(41) W ( ) =Wuu+
X
x2X

We(x) (x);

where

(42) Wuu = max
v2R+

n
�cv + (u�M(v; u))(z + �Wu) +M(v; u)(y(v; u) + � ~We(v; u))

o
and

(43) ~We(v; u) �
X
x2X

We(x)f(x; (v; u))

and

(44) We(x) = �(z + �Wu) + (1� �)(x+ �We(x)):

Proof. Part (i). The proof is essentially identical to the proof of Lemma 1 except
that we de�ne an operator T with domain C(	) by

(45) (TR)( ) = max
v2R+


(vj ) + �R( +)

where  + is given by (38) and 
 is de�ned by (40), and we can replace the constraint

v 2 R+ with v 2 [0; �v]; where �v � c�1f[maxfz; xNg �minfz; x1g] + �[ �R�R0]g:
Part (ii). The proof is almost identical to Lemma 1 except it uses (45), (38), and

(40) to obtain the linear expression for W ( ). �
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The dynamic expected match surplus s(v; u) is given by

(46) s(v; u) = y(v; u)� z + �( ~We(v; u)�Wu):

Assumption 20. The function �(:; :); de�ned by �(v; u) �M(v; u)s(v; u) for v 2
R+ and u 2 R+nf0g, satis�es the following: (i) limv!0 �(v; u) = 0; (ii) limv!0

@�
@v
> c;

(iii) limv!1
@�
@v
< c; and (iv) @2�

@v2
< 0 for all v 2 R+ and u 2 R+nf0g.

Assumptions 10 and 20 are assumed to hold throughout Online Appendix A.

Proposition 10. There exists a unique e¢ cient allocation (vPt )
1
t=0 where v

P
t =

vP > 0 for all t and vP satis�es the following condition:

(47)
@M

@v

v

M(v; u)| {z }
matching elasticity

+
@s

@v

v

s(v; u)| {z }
surplus elasticity

=
cv

M(v; u)s(v; u)| {z } :
buyers� surplus share

Proof. Rearranging (42) from Lemma 10, the optimal vP is given by

(48)

vP = argmax
v2R+

n
�cv + zu+ �Wuu+M(v; u)(y(v; u)� z + �( ~We(v; u)�Wu))

o
;

which can be rewritten using (46) as

(49) vP = argmax
v2R+

fM(v; u)s(v; u) + zu� cv + �Wuug :

Taking the �rst-order condition, the optimal vP satis�es

(50)
@M

@v
s(v; u) +M(v; u)

@s

@v
� c

and vP � 0 with complementary slackness. Assumption 20 implies that, for any

given u 2 R+nf0g, there exists a unique solution vP > 0 that satis�es @�
@v
= c where

�(v; u) �M(v; u)s(v; u). Therefore, there exists a unique vP > 0 that satis�es

@M

@v
s(v; u) +M(v; u)

@s

@v
= c:

Dividing both sides of the above equation by M(v; u)s(v; u)=v yields (47). �
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Proposition 20. There exists a unique e¢ cient allocation (vPt )
1
t=0 where v

P
t =

vP > 0 for all t and vP satis�es the following condition:

(51)
@M

@v

v

M(v; u)
+
@y

@v

v

(1� �(1� �))s(v; u)
=

cv

M(v; u)s(v; u)
:

Proof. Di¤erentiating (46) with respect to v,

(52)
@s

@v
=
@y

@v
+ �

@ ~We

@v
:

Using (43), we obtain

(53) ~We(v; u) =
�(z + �Wu) + (1� �)y(v; u)

1� �(1� �)
:

Di¤erentiating the above yields

(54)
@ ~We

@v
=

(1� �)

1� �(1� �)

@y

@v
:

Substituting (54) into (52) and simplifying yields

(55)
@s

@v
=

1

1� �(1� �)

@y

@v
:

Finally, substituting (55) into (47) delivers condition (51). �

B. Constrained planner

In the following example featuring ex ante heterogeneity, we suppose that the

planner is constrained not only by the matching frictions but also by the entry de-

cisions agents would choose in the decentralized equilibrium. This is because the

function y(:) arises as a consequence of these entry decisions. Since the planner is

restricted to take both the matching technology m(:) and the output technology y(:)

as given, the planner is constrained by these.21

21In this example, the constrained e¢ ciency is �doubly constrained�since the planner�s problem
is solved subject to an additional constraint which is one of the equilibrium conditions.
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Ex ante heterogeneity and market composition

When there is ex ante heterogeneity among buyers or sellers, dependence of the

expected match output on market tightness can arise naturally through market com-

position. If the market tightness in�uences the individual entry decisions of buyers

or sellers that are ex ante heterogeneous with respect to characteristics that a¤ect

match output, then average output per match will depend on market tightness.22 We

call this the composition channel.

Suppose there is a measure u of unemployed workers and a �xed measure M of

�rms that may choose to search. Firms�productivities x are distributed according

to a twice di¤erentiable distribution with cdf G and density g where G(0) = 0 and

g(x) > 0 for all x 2 X = [0; 1]. Firms learn their own productivity before deciding

whether to pay the entry cost c > 0 and search. Expected wages paid by a �rm with

productivity x is w(x; �) � x.

Let v be the measure of searching �rms and de�ne � � v=u. Meetings are bi-

lateral and the probabilities of matching for workers and �rms are m(�) and m(�)=�

respectively, where we assume m(:) satis�es Assumption 1.

A �rm with productivity x chooses to search for a worker if and only if

(56)
m(�)

�
(x� w(x; �)) > c:

If @w(x; �)=@x < 1, there is a unique cut-o¤ productivity x�(�) such that �rms enter

if and only if x � x�(�).23 The distribution of output across matches has density

(57) f(x; �) =
g(x)

1�G(x�(�))

and the expected match output, or labor productivity, is given by

(58) y(�) =

Z 1

x�(�)

xg(x)

1�G(x�(�))
dx:

22For example, Albrecht, Navarro, and Vroman (2010) consider an environment where workers
are ex ante heterogeneous with respect to their market productivity. There is both �rm entry and
a labor force participation decision. See also Albrecht, Navarro, and Vroman (2009), Gavrel (2011),
and Masters (2015). In a follow-up paper to the present one, Julien and Mangin (2017) applies and
extends the generalized Hosios condition to the environment in Albrecht et al. (2010).
23This is true, for example, if wages are determined by Nash bargaining with � < 1.
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It can be veri�ed that x� is strictly increasing in � provided that @w(x; �)=@x < 1.

This is intuitive: as the market tightness increases, the probability of �nding a worker

is lower so only high productivity �rms choose to pay the cost c and search. At the

same time, the average match output y(�) is increasing in the cut-o¤ productivity x�.

Therefore, y0(�) > 0 for all � 2 R+ and the output externality is positive.
Suppose the planner chooses a market tightness � to maximize the total social

surplus minus the total entry costs. We assume the planner uses the same cut-o¤

productivity rule x�(�) as in the decentralized economy. If Assumption 2 is satis�ed,

there exists a unique social optimum �P and we have constrained e¢ ciency if and only

if �� satis�es the generalized Hosios condition in Proposition 1.24 Since y0(��) > 0,

Corollary 1 implies there is under-entry of �rms under the standard Hosios condition.

C. Competitive search (posting)

It is well-known that competitive search equilibrium is typically (but not always)

constrained e¢ cient in the sense that it decentralizes the planner�s allocation (Shimer,

1996; Moen, 1997). In competitive search models where the expected match output is

constant, agents simply trade o¤prices against the probability of trade. The fact that

competitive search allows agents to do so is what delivers e¢ ciency. In environments

where the expected match output depends on the market tightness, agents trade o¤

prices against both the probability of trade and the expected match surplus if trade

occurs. Again, the fact that agents can do so is what delivers e¢ ciency.

Consider a simple competitive search model in the spirit of Moen (1997). There

is a continuum of submarkets indexed by i 2 [0; 1] and free entry of vacancies at cost
c > 0: Workers in submarket i post the same wage wi and face the same market

tightness �i, the ratio of vacancies to workers in that submarket. Firms�search is

directed by observing the posted wages and deciding which submarkets to enter.

Within each submarket, workers and �rms are matched according to a frictional

meeting technology. Matching probabilities for workers and �rms are m(�i) and

m(�i)=�i respectively, where m(:) satis�es Assumption 1.

In any submarket, match output x 2 X = [xmin; xmax] � R+ where xmax 2 R+ [
f1g. In submarket i, match output is an i.i.d. draw from a probability distribution

with density f(x; �i) and a �nite mean. Let y(�i) �
R xmax
xmin

xf(x; �i)dx, the expected

24For example, if G is uniform on [0; 1] and wages are determined by Nash bargaining, Assumption
2 holds provided that c < 1=2 and � < 1=2.

25



match output. The �ow payo¤ for unmatched sellers is z � 0 and we assume that

xmin > z. The expected match surplus in submarket i is s(�i) = y(�i)� z.

The expected payo¤ for �rms in submarket i with wage wi and tightness �i is

(59) �(�i; wi) =
m(�i)

�i
(y(�i)� wi);

and the expected payo¤ for workers in submarket i with market tightness �i is

(60) V (�i; wi) = m(�i)wi + (1�m(�i))z:

Workers in submarket i choose a wage w�i and market tightness �
�
i that solve

(61) max
wi;�i2R+

(m(�i)wi + (1�m(�i))z)

subject to �(�i; wi) � c and �i � 0 with complementary slackness. To induce partic-
ipation by �rms in submarket i, i.e. �i > 0, the constraint �(�i; wi) � c is binding:

(62)
m(�i)

�i
(y(�i)� wi) = c:

Solving for wi as a function of �i using (62), we obtain

(63) w(�i) = y(�i)�
c�i
m(�i)

:

Choosing a wage w�i is thus equivalent to choosing a market tightness �
�
i where

(64) ��i = arg max
�i2R+

(m(�i)w(�i) + (1�m(�i))z)

and using (63), this is equivalent to

(65) ��i = arg max
�i2R+

(m(�i)y(�i) + (1�m(�i))z � c�i) :

The equilibrium ��i satis�es the �rst-order condition

(66) m0(�i)s(�i) +m(�i)s
0(�i) = c;
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or, equivalently, the equilibrium ��i solves

(67) �m(�i)| {z }
matching elasticity

+ �s(�i)| {z }
surplus elasticity

=
c�i

m(�i)s(�i)| {z }
�rms�surplus share

:

The generalized Hosios condition holds endogenously within each active submarket

i. If we consider a symmetric equilibrium in which �rms are indi¤erent across sub-

markets and all workers post the same wage, then ��i = �� for all submarkets i. If

Assumption 2 holds, then Proposition 1 tells us that the equilibrium level of vacancy

entry is constrained e¢ cient. While we consider only a static model here, the same

result holds in dynamic environments where Proposition 1 applies.
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