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A Proofs and derivations

A.0 Useful facts

Here we reproduce some useful facts presented in Lemma 3 and Fact 1 in Mangin
(2017) that will be used in the proofs in this Appendix.

For any s ∈ R+and x ∈ R+, the Lower Incomplete Gamma function is defined by

(1) γ(s, x) ≡
∫ x

0

ts−1e−t dt.

Observe that limx→∞ γ(s, x) = Γ(s), the Gamma function, and γ(1, x) = 1− e−x.

Fact 1. Recurrence relation: γ(s, x) = (s− 1)γ(s− 1, x)− xs−1e−x

Fact 2. ∂
∂x
γ(s, x) = xs−1e−x

Fact 3. ∂
∂s
γ(s, x) =

∫ x
0
ts−1e−t(ln t)dt

Fact 4. For x > 0, the elasticity of γ(s, x) with respect to x is

(2) ε(s, x) =
xse−x

γ(s, x)
.

Fact 5. For x > 0, the derivative of ε(s, x) with respect to s is

∂

∂s
ε(s, x) = xse−x

(∫ x
0

(lnx− ln t)ts−1e−tdt

γ(s, x)2

)
> 0.

Fact 6. For x > 0, the derivative of ε(s, x) with respect to x is

∂

∂x
ε(s, x) =

xs−1e−x

γ(s, x)

(
s− x− xse−x

γ(s, x)

)
< 0.

Fact 7. limx→0 ε(s, x) = s and limx→∞ε(s, x) = 0
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A.1 Proof there exists a unique cut-off productivity

First, we assume that both workers and firms accept when indifferent.
In a bilateral meeting, workers always accept the wage offered by definition of the

reservation wage bτ . A match is therefore acceptable to both workers and firms in a
bilateral meeting if and only if the firm accepts, which is true if and only if J1

t,τ (x) ≥ 0
or x ≥ x1ct where x1ct is the unique solution to J1

t,τ (x) = 0.
In a multilateral meeting, firms always accept since Atx1 > Atx2 for all t, where x1

and x2 are respectively the highest and second-highest productivities among the firms
competing to hire the worker. So match acceptability depends on workers alone. A
firm with productivity x can offer the worker (or ”bid” in an auction) a wage contract
that is at best equal to V max

τ,τ (x) where

(3) V max
t,τ (x) = Atx+ β((1− δ)EtV max

t+1,τ (x) + δEtV u
t+1).

At the time of hiring τ , workers will only consider ”bids” from firms with productivities
x that satisfy V max

τ,τ (x) ≥ V 1
τ,τ (bτ ) or x ≥ x2ct where x2ct is the unique solution to

V max
τ,τ (x)−V 1

τ,τ (bτ ) = 0, since V 1
τ,τ (bτ ) = z+βV u

τ+1, the value of remaining unemployed.
Now, using (3) above, and (14) from Section 2.3 of the main text, we have

V max
τ,τ (x)− V 1

τ,τ (bτ ) = Aτx− bτ + β(1− δ)Eτ (V max
τ+1,τ (x)− V 1

τ+1,τ (bτ )),

and since J1
τ,τ (x) is given by

J1
τ,τ (x) = Aτx− bτ + β(1− δ)EtJ1

τ+1,τ (x),

we have V max
τ,τ (x)− V 1

τ,τ (bτ ) = J1
τ,τ (x).

Therefore x1ct = x2ct and we call this unique cut-off productivity xct . Only firms
with productivity x ≥ xct will decide to compete, and all matches with x ≥ xct will be
acceptable by both workers and firms, at least at the time of hiring.1

A.2 Derivation of value of a filled vacancy

The expected value of an filled vacancy Jτ,τ at the time of match creation τ is

(4) q(θτ )Jτ,τ = e−θτJ1
τ,τ + (1− e−θτ )J2

τ,τ ,

and J1
t,τ and J2

t,τ are the respective expected payoffs in period t from a bilateral meeting
(which occurs with probability e−θτ ),2 or from a multilateral meeting (which occurs

1Note that whether a match is either bilateral or multilateral (i.e. there are either one or two or
more competing firms) itself depends on the cut-off productivities x1ct and x2ct . Since we show that
the same cut-off xct applies for both types of matches, this is not a problem.

2Note that these are the Poisson probabilities of n firms approaching from the perspective of the
firm, which are the probabilities from the workers’ perspective divided by θ.
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with probability 1− e−θτ ) during the matching period τ .3

The expected value at time t of a vacancy that is filled in a bilateral meeting in
period τ is

(5) J1
t,τ =

∫ ∞
x0t

J1
t,τ (x)dGc

τ (x)

and the expected value of a vacancy, with productivity drawn from Gc
τ (x), that is

competing to hire a worker in a multilateral meeting is

(6) J2
t,τ =

∫ ∞
x0t

ητ (x)J2
t,τ (x)dGc

τ (x),

where ητ (x) is the probability that a firm with productivity x successfully hires, con-
ditional on two or more firms competing.

Using (4), (5), and (6) above, and equations (16) and (19) from the main text,

q(θτ )Jt,τ = e−θτ
∫ ∞
x0τ

(Atx− bτ )dGc
τ (x) + (1− e−θτ )

∫ ∞
x0τ

ητ (x)(Atx− w2
t,τ (Atx))dGc

τ (x)

+β(1− δ)q(θτ )EtJt+1,τ

Defining a new variable y = Atx and letting Gt,τ (y) ≡ Gc
τ (y/At) and ηt,τ (y) ≡ ητ (y/At),

q(θτ )Jt,τ = e−θτ
∫ ∞
Atx0τ

(y − bτ )dGt,τ (y) + (1− e−θτ )
∫ ∞
Atx0τ

ηt,τ (y)(y − w2
t,τ (y))dGt,τ (y)

+β(1− δ)q(θτ )EtJt+1,τ

Applying a result found in the Appendix of Mangin (2017) we have∫ ∞
Atx0τ

ηt,τ (y)(y − w2
t,τ (y))dGt,τ (y) =

∫ ∞
Atx0τ

ηt,τ (y)(1−Gt,τ (y))dy

and therefore we have:

q(θτ )Jt,τ = e−θτ
∫ ∞
Atx0τ

(y−bτ )dGt,τ (y)+(1−e−θτ )
∫ ∞
Atx0τ

ηt,τ (y)(1−Gt,τ (y))dy+β(1−δ)q(θτ )EtJt+1,τ

Next, it can be shown that

ηt,τ (y) =
e−θτ (1−Gt,τ (y)) − e−θτ

1− e−θτ
3Observe that J1

t,τ is the value of a filled vacancy since the probability of hiring is one in a bilateral
match, but J2

t,τ is not the value of a filled vacancy since it incorporates the probability the firm will
be successful in hiring (i.e. it will have the highest productivity).

4



and, simplifying further, using a result from the Appendix of Mangin (2017) we obtain:

Jt,τ=
1

q(θτ )

(∫ ∞
Atx0τ

e−θτ (1−Gt,τ (y))(1−Gt,τ (y))dy + e−θτ (Atx0τ − bτ )
)

+β(1− δ)EtJt+1,τ

Rearranging, and using the fact that µ(θτ ) = e−θτ/q(θτ ), we have

1

q(θτ )

∫ ∞
Atx0τ

e−θτ (1−Gt,τ (y))(1−Gt,τ (y))dy

=
1

m(θτ )

∫ ∞
Atx0τ

(
1−Gt,τ (y)

ygt,τ (y)

)
θτe
−θτ (1−Gt,τ (y))gt,τ (y)ydy

=

∫
1−Gt,τ (y)

ygt,τ (y)
ydHe

t,τ (y; θτ )

where He
t,τ (y; θτ ) ≡ He

τ (y/At; θτ ), the distribution at time t of output y = Atx across
matches formed at time τ . Substituting into the above, we obtain:

(7) Jt,τ = πt,τ (θτ )︸ ︷︷ ︸
productivity rents

+µ(θτ )(Atx0τ − bτ )︸ ︷︷ ︸
matching rents

+β(1− δ)EtJt+1,τ

where µ(θτ ) is the share of bilateral meetings at time τ, and πt,τ (θτ ) is the expected
value of productivity rents at time t for a match formed in period τ , defined by

(8) πt,τ (θτ ) ≡
∫ ∞
Atx0τ

(
1−Gt,τ (y)

ygt,τ (y)

)
ydHe

t,τ (y; θτ ).

A.3 Generalized Pareto distribution

The Generalized Pareto distribution (GPD) also yields tractable expressions for
steady state expected wages, factor income shares, and the expected output per match.

Let G(x) with support [xmin,∞) be defined as follows:

(9) G(x) =

 1−
(

1 + λ(x−xmin)
σ

)−1/λ
if λ > 0

1− e−(x−xmin
σ ) if λ = 0

where λ ∈ [0, 1) and σ ∈ (0,∞). We assume that σ ≥ λ and xmin = 1. This distribution
nests the Pareto as the special case where σ = λ > 0, and it nests the exponential as
the special case where λ = 0.

We again define Gb(y) ≡ Gc(y/A). For the generalized Pareto distribution, we have

(10)
1−Gb(y)

ygb(y)
= λ+

A(σ − λ)

y
.
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Substituting into (21) and (22) from Section 2.3 of the main text yields the following

(11) w̃ = (1− λ)Ap(θ)− A(σ − λ)− (Ax0 − b)µ(θ).

Steady state labor’s share sL is

(12) sL = 1− λ−
(
σ − λ
p(θ)

)
− µ(θ) (Ax0 − b)

Ap(θ)
.

In the special case where σ = λ > 0, we recover the corresponding expressions for
the Pareto distribution. In the special case where λ = 0, we obtain expressions for
wages and labor’s share for the exponential distribution.

In general, whenever b ≥ A in the steady state, we have x0 = b/A and the last term
on the right of (12) disappears. However, observe that steady state factor shares are
not constant whenever σ 6= λ since we have

(13) sL = 1− λ−
(
σ − λ
p(θ)

)
if b ≥ A.

Regardless of the level of the endogenous reservation wage b, labor share is increasing
in the degree of firm competition θ since p′(θ) > 0. Lemma 1 extends to the GPD.

If b < A, we can also obtain a tractable expression for p(θ). For the generalized
Pareto distribution, if λ > 0 the average match productivity is

(14) p(θ) =
(σ
λ

) γ(1− λ, θ)θλ

1− e−θ
−
(
σ − λ
λ

)
.

In the special case where σ = λ, we recover the corresponding expression for the Pareto
distribution when x0 = 1.

A.4 Existence and uniqueness of function φr

Existence. Let F (θ) = (1−G(xc))
(∫∞

Ax0
e−θ(1−Gb(y))(1−Gb(y))dy + e−θ(Ax0 − b)

)
,

b ∈ R+. The zero profit condition holds if and only if F (θ) = C(1 − β(1 − δ)),
where C(1 − β(1 − δ) > 0. Now F (θ) is continuous in θ on [0, ∞) and F (θ) → 0
as θ → ∞. If we can ensure that F (0) > C(1 − β(1 − δ)), the intermediate value
theorem implies there exists θ > 0 such that F (θ) = C(1 − β(1 − δ)). Now, F (0) =

(1−G(xc))
(∫∞

Ax0
(1−Gb(y))dy + (1− b)

)
= (1−G(xc))(EGb(y)−b). If G(x) is Pareto,

we have F (0) > C(1− β(1− δ)) provided the following condition holds:

(15) C <
x
−1/λ
0

1− β(1− δ)

(
Ax0

1− λ
− b
)
.
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If condition (15) holds, there exists θ > 0 and hence there exists φ > 0 such that the
zero profit condition holds, where φ = θ/(1−G(xc)). If (15) fails, then no firms enter
and θ = φ = 0.

If Assumption 1 holds, there is a unique critical value b̄(λ, β, δ, C) > z such that

condition (15) holds whenever b < b̄. To see this, let f(b) =
x
−1/λ
0

1−β(1−δ)

(
Ax0
1−λ − b

)
− C.

Condition (15) holds if and only if f(b) > 0. First we prove that f ′(b) < 0. If b ≤ A,
we have x0 = 1 so f(b) = 1

1−β(1−δ)

(
A

1−λ − b
)
− C and f ′(b) = −1

1−β(1−δ) < 0. If b > A,

we have f(b) = λb1−1/λA−1/λ

(1−λ)(1−β(1−δ)) − C, so f ′(b) = −(b/A)−1/λ

1−β(1−δ) < 0. So for all b ∈ R+, we

have f ′(b) < 0. Now if f(z) > 0, then since f ′(b) < 0 and f(b)→ −C as b→∞, there
exists a unique b̄ > z such that f(b̄) = 0. Since z < A, we have f(z) > 0 provided that

(16) C <
1

1− β(1− δ)

(
A

1− λ
− z
)
.

Condition (16) ensures that there exists a unique critical value b̄ > z such that f(b̄) = 0.
We know that for any b < b̄ condition (15) also holds and therefore there exists θ > 0
and φ > 0 that satisfy the zero profit condition, where φ = θ/(1−G(b)). If b ≥ b̄, then
(15) fails and hence θ = φ = 0.

Uniqueness. To prove the uniqueness of θ which satisfies F (θ) = C(1−β(1−δ)), and
hence the uniqueness of φ = θ/(1−G(b)), it suffices to show that F ′(θ) < 0. Applying

Leibniz’ rule, F ′(θ) = −(1−G(xc))
(∫∞

Ax0
(1−Gb(y))2 e−θ(1−Gb(y))dy + (1− b)e−θ

)
< 0.

So for any given b ∈ R+, there exists a unique θ and hence a unique φ that satisfies
the zero profit condition. In other words, we have a function φr(b) : R+ → R+.

A.5 Proof that φ′r(b) ≤ 0

If b ≥ b̄, we have φr(b) = 0 and so φ′r(b) = 0 for b > b̄. Assume instead that b < b̄.

Let F1(θ, b) = x
−1/λ
0 (Ax0λθ

λ−1γ(1−λ, θ)+e−θ(Ax0−b))−C(1−β(1−δ)) = 0 where x0 =
max{1, b/A}. When b < A, F1(θ, b) = Aλθλ−1γ(1−λ, θ) + e−θ(A− b)−C(1−β(1− δ))
and θ = φ, so ∂F1/∂b = −e−θ and ∂F1/∂θ = −(Aλθλ−2γ(2 − λ, θ) + e−θ(A − b)). By

the implicit function theorem, θ′r(b) = φ′r(b) = − ∂F1/∂b
∂F1/∂θ

, which gives the following:

(17) φ′r(b) = θ′r(b) =
−e−θ

Aλθλ−2γ(2− λ, θ) + e−θ(A− b)
< 0, b < A.

When b ≥ A, we have F1(θ(φ, b), b) = A−1/λb1−1/λλθλ−1γ(1− λ, θ)− C(1− β(1− δ))
where θ(φ, b) = φ(1 − G(xc)) = φ(b/A)−1/λ and hence ∂θ

∂b
= − 1

λ
θb−1. Now φ′r(b) =

− dF1/db
dF1/dφ

, where ∂F1/∂θ = −A−1/λb1−1/λλθλ−2γ(2 − λ, θ) is obtained by differentiating

and then applying Fact 1. Again using Fact 1 to simplify the following, we have dF1

db
=

∂F1

∂θ
∂θ
∂b

+ ∂F1

∂b
= −A−1/λb−1/λe−θ. Also, dF1

dφ
is given by dF1

dφ
= ∂F1

∂θ
∂θ
∂φ

= −b1−1/λλθλ−2γ(2−
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λ, θ)b−1/λ, so we have the following expression for φ′r(b), which is again negative:

φ′r(b) = − dF1/db

dF1/dφ
=

−e−θ

b1−1/λλθλ−2γ(2− λ, θ)
< 0, b ≥ A.

A.6 Steady state reservation wage

Let V 1(w) be the expected value of being employed at wage w and let V u be the
expected value of being unemployed. We have

(18) V 1(w) = w + β((1− δ)V 1(w) + δV u).

Workers decide whether to accept or reject wage offers w, taking φ as given. If V 1(w) ≥
z+βV u, workers accept the wage offer w , while if V 1(w) < z+βV u they reject it. We
show that for any given φ there exists a unique reservation wage b such that workers
will accept a wage offer w if and only if w ≥ b. The reservation wage b satisfies
V 1(b) = z + βV u. Rearranging (18), we have

V 1(w) =
w + βδV u

1− β(1− δ)
.

Since dV 1(w)/dw > 0, limw→∞ V
1(w) = +∞, and we can verify that V 1(0) < z+βV u,

there exists a unique reservation wage b for any given φ such that V 1(b) = z+βV u. This
gives us a function br(φ) : R+ → R+. Given the existence of the unique reservation
wage b, we can then derive the expression for V u. Letting θ = φ(1 − G(xc)), the
expected value of being unemployed at the start of a period is

V u = m(θ)

∫ ∞
x0

max(V 1(w), z + βV u)dF̃ (w, θ) + (1−m(θ)(z + βV u),

where F̃ (w, θ) is the distribution of wage offers w given θ. Substituting in V 1(b), we
have max(V 1(w), z+βV u) = max(V 1(w), V 1(b)) = V 1(w) since b ≤ w for all w. Since∫∞
x0
V 1(w)dF̃ (w, θ) = V e where V e is the expected value of employment, we obtain

V u = m(θ)V e + (1−m(θ))(z + βV u).

A.7 Proof that b′r(φ) > 0

Start with expression (35) in Section 3.2 of the main text for the reservation wage:

b =
z(1− β(1− δ)) + β(1− δ)w(θ, b)

1− β(1− δ)e−θ
.
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Let F2(θ, b) = b(1 − β(1 − δ)e−θ) − z(1 − β(1 − δ)) − β(1 − δ)w(θ, b) = 0 and let
w(θ, b) = Ax0(1− λ)θλγ(1− λ, θ)− θe−θ(Ax0 − b) where x0 = max{1, b/A}. We have

(19)
∂F2

∂θ
= β(1− δ)

(
be−θ − ∂w

∂θ

)
,

(20)
∂F2

∂b
= 1− β(1− δ)e−θ − β(1− δ)∂w

∂b
.

If b < A, then θ = φ and w(θ, b) = (1−λ)Aθλγ(1−λ, θ)−θe−θ(A−b).Differentiating,

∂w

∂θ
= (1− λ)A(λθλ−1γ(1− λ, θ) + e−θ)− (A− b)(e−θ(1− θ)) and

∂w

∂b
= θe−θ.

Substituting these into (19) and (20) and simplifying, we have

∂F2

∂θ
= −β(1− δ)(λAθλ−1γ(2− λ, θ) + (A− b)θe−θ),

∂F2

∂b
= 1− β(1− δ)e−θ − β(1− δ)θe−θ.

and hence using b′r(φ) = b′r(θ) = −∂F2/∂θ
∂F2/∂b

we have

(21) b′r(φ) = b′r(θ) =
β(1− δ)(λAθλ−1γ(2− λ, θ) + (A− b)θe−θ)

1− β(1− δ)e−θ − β(1− δ)θe−θ
> 0, b < A.

The numerator is positive when b < A and the denominator is positive since 1− e−θ −
θe−θ > 0 and β(1− δ) < 1, so b′r(φ) > 0 when b < A.

If b ≥ A, then we have F2(θ(φ, b), b) = b(1− β(1− δ)e−θ)− z(1− β(1− δ))− β(1−
δ)w(θ, b) where w(θ, b) = b(1−λ)θλγ(1−λ, θ) and θ(φ, b) = φ(1−G(xc)) = φ(b/A)−1/λ,
and hence ∂θ

∂b
= − 1

λ
θb−1. Differentiating, we have

∂w

∂θ
= b(1− λ)(λθλ−1γ(1− λ, θ) + e−θ) and

∂w

∂b
= (1− λ)θλγ(1− λ, θ).

Substituting into (19) and (20) and simplifying using Fact 1,

∂F2

∂θ
= −β(1− δ)bλθλ−1γ(2− λ, θ),

∂F2

∂b
= 1− β(1− δ)e−θ − β(1− δ)(1− λ)θλγ(1− λ, θ).

Now b′r(φ) = −dF2/∂φ
dF2/∂b

, where dF2

dφ
= ∂F2

∂θ
∂θ
∂φ

= −b1−1/λA1/λβ(1 − δ)λθλ−1γ(2 − λ, θ) and
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dF2

db
= ∂F2

∂θ
∂θ
∂b

+ ∂F2

∂b
= 1− β(1− δ)e−θ − β(1− δ)θe−θ, by applying Fact 3. So we have

b′r(φ) = −dF2/∂φ

dF2/∂b
=
b1−1/λA1/λβ(1− δ)λθλ−1γ(2− λ, θ)

1− β(1− δ)e−θ − β(1− δ)θe−θ
> 0, b ≥ A.

A.8 Proof of Proposition 2

Here we establish some comparative statics results for the equilibrium (φ∗, b∗) with
respect to the parameters pi ∈ p = (λ, z, C). We restrict our attention to the case
where b < A and φ = θ.

Consider the functions θr(b; p) and br(θ; p). The function θr is differentiable for
any b < b̄ and the function br is differentiable for any θ ≥ 0. Let x = (θ, b) and define
the following function:

G(x; p) =

[
br(θ; p)− b
θr(b; p)− θ

]
.

By definition, x∗ = (θ∗, b∗) is an equilibrium if and only if G(x, p) = 0. By the implicit
function theorem, for any pi ∈ p we have

Dx∗(pi) = −(DxG(x∗(pi); pi))
−1DpiG(x∗(pi); pi)

= −
[
∂br
∂θ
−1

−1 ∂θr
∂b

]−1 [ ∂br
∂pi
∂θr
∂pi

]
.(22)

For notational simplicity, denote the matrix DxG(x∗(pi); pi) by JG. Using the deriva-
tives ∂br/∂θ and ∂θr/∂b given by (21) and (17) respectively, we obtain

(23) det JG =
−(1− β(1− δ)e−θ)

1− β(1− δ)e−θ − β(1− δ)θe−θ
,

where det JG < −1 and hence JG is invertible. Multiplying out (22), for any pi ∈ p,

∂θ∗

∂pi
= −(det JG)−1

(
∂θr
∂b

∂br
∂pi

+
∂θr
∂pi

)
,

∂b∗

∂pi
= −(det JG)−1

(
∂br
∂pi

+
∂br
∂θ

∂θr
∂pi

)
.

The functions θr(b; p) and br(θ; p) are implicitly defined by (24) and (25):

(24) F1(θ, b; p) = λAθλ−1γ(1− λ, θ) + e−θ(A− b)− C(1− β(1− δ)) = 0,

(25) F2(θ, b; p) = b(1− β(1− δ)e−θ)− z(1− β(1− δ))− β(1− δ)w(θ, b; p) = 0,

where w(θ, b; p) = (1− λ)Aθλγ(1− λ, θ)− θe−θ(A− b).
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We can now use the implicit function theorem in relation to F1(θ, b; p) and F2(θ, b; p)
and apply some earlier results to obtain the following comparative statics.

Comparative statics for z.

∂θ∗

∂z
= −(det JG)−1

(
∂θr
∂b

∂br
∂z

+
∂θr
∂z

)
=
−(1− β(1− δ))
1− β(1− δ)e−θ

(
e−θ

λAθλ−2γ(2− λ, θ) + e−θ(A− b)

)
< 0(26)

∂b∗

∂z
= −(det JG)−1

(
∂br
∂z

+
∂br
∂θ

∂θr
∂z

)
=

1− β(1− δ)
1− β(1− δ)e−θ

> 0(27)

Comparative statics for C.

∂θ∗

∂C
= −(det JG)−1

(
∂θr
∂b

∂br
∂C

+
∂θr
∂C

)
=
−(1− β(1− δ))
1− β(1− δ)e−θ

(
1− β(1− δ)e−θ − β(1− δ)θe−θ

λAθλ−2γ(2− λ, θ) + e−θ(A− b)

)
< 0(28)

∂b∗

∂C
= −(det JG)−1

(
∂br
∂C

+
∂br
∂θ

∂θr
∂C

)
=
−(1− β(1− δ))β(1− δ)θ

1− β(1− δ)e−θ
< 0(29)

Comparative statics for λ. For b < A, using (17) we have

∂θ∗

∂λ
= −(det JG)−1

(
∂θr
∂b

∂br
∂λ

+
∂θr
∂λ

)
(30)

=
Aθλ−1 (γ(1− λ, θ) + (λ− µ)B)

λAθλ−2γ(2− λ, θ) + e−θ(A− b)
, where µ =

β(1− δ)θe−θ

1− β(1− δ)e−θ

and B is given by the following:

(31) B =

∫ θ

0

t−λe−t(ln θ − ln t)dt.

We have ∂θ∗

∂λ
> 0 if and only if γ(1 − λ, θ) + (λ − µ)B > 0. If λ ≥ µ, this is clearly

true for θ > 0. Suppose instead that µ > λ. Rearranging and multiplying both sides
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by 1 − λ, we have ∂θ∗

∂λ
> 0 if and only if B(1−λ)

γ(1−λ,θ) <
1−λ
µ−λ . Now (1 − λ)/(µ − λ) > 1/µ

provided µ < 1, which is true since 1− β(1− δ)e−θ − β(1− δ)θe−θ > 0. So it suffices
to show that

(32)
B(1− λ)

γ(1− λ, θ)
β(1− δ)θe−θ

1− β(1− δ)e−θ
< 1.

It follows from Lemma 4 in the Appendix of Mangin (2017) that

B(1− λ)

γ(1− λ, θ)
<

(2− λ)γ(2− λ, θ)
θ2−λe−θ

.

Hence to establish (32), it is sufficient to show that m(θ) ≤ 1/(2 − λ) where m(θ) =
β(1−δ)θλ−1γ(2−λ,θ)

1−β(1−δ)e−θ . It can be shown that max m(θ) = 1−ζ
2−λ−ζ where ζ is the unique

solution to 1 − β(1 − δ)e−ζ = ζ. To ensure that ∂θ∗

∂λ
> 0, it suffices to show that

1−ζ
2−λ−ζ ≤

1
2−λ , which is always true since λ < 1 and ζ > 0. So we have ∂θ∗

∂λ
> 0 for b < 1.

We also have ∂b∗

∂λ
> 0 for b < A and θ > 0.

∂b∗

∂λ
= −(det JG)−1

(
∂br
∂λ

+
∂br
∂θ

∂θr
∂λ

)
=

ABβ(1− δ)θλ

1− β(1− δ)e−θ
> 0.(33)

Comparative statics for A.

∂θ∗

∂A
= −(det JG)−1

(
∂θr
∂b

∂br
∂A

+
∂θr
∂A

)
=

(λ− µ)θλ−1γ(1− λ, θ) + e−θ

λAθλ−2γ(2− λ, θ) + e−θ(A− b)
, where µ =

β(1− δ)θe−θ

1− β(1− δ)e−θ
.(34)

Since b/A < 1, we have ∂θ∗

∂A
> 0 if and only if

(35) (λ− µ)θλ−1γ(1− λ, θ) + e−θ > 0,

which is true if and only if

(36) λ+
θ1−λe−θ

γ(1− λ, θ)
>

β(1− δ)θe−θ

1− β(1− δ)e−θ
.

Since β(1− δ) < 1, we have β(1−δ)θe−θ
1−β(1−δ)e−θ <

θe−θ

1−e−θ and it suffices to show that

(37) λ+
θ1−λe−θ

γ(1− λ, θ)
≥ θe−θ

1− e−θ
,
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which is true provided that ∂h
∂λ
> 0 where h(λ, θ) = λ + θ1−λe−θ

γ(1−λ,θ) , since h(0, θ) = θe−θ

1−e−θ .

Differentiating h(λ, θ) with respect to λ using Fact 5, we have

(38)
∂h

∂λ
= 1− θ1−λe−θB

γ(1− λ, θ)2

So ∂h
∂λ
> 0 if and only if θ1−λe−θB < γ(1− λ, θ)2. Substituting in the expression for B

derived in the Appendix of Mangin (2017), we require that(
θ1−λ

1− λ

)2

e−θF2,2(1− λ, 1− λ; 2− λ, 2− λ;−θ) < γ(1− λ, θ)2 .

Using the identity γ(x, z) = zxx−1F1,1(x;x + 1;−z) from Andrews, Askey, and Roy
(2000) this is equivalent to

(39) e−θF2,2(1− λ, 1− λ; 2− λ, 2− λ;−θ) < F1,1(1− λ; 2− λ;−θ)2.

Now Lemma 4 in Mangin (2014) implies that the left-hand side of (39) is less than
or equal to F1,1(1 − λ; 2 − λ;−θ)F1,1(2 − λ; 3 − λ;−θ), so it suffices to show that
F1,1(2−λ; 3−λ;−θ) < F1,1(1−λ; 2−λ;−θ). Applying Kummer’s first transformation,
F1,1(y; z;−x) = e−xF1,1(z − y; z;x) from Andrews, Askey, and Roy (2000), we require
that F1,1(1; 3− λ; θ) < F1,1(1; 2− λ; θ). This is true since the function F1,1(a1; b1;x) is
decreasing in its second argument. Hence ∂h

∂λ
> 0, so the original inequality (37) holds

and therefore ∂θ∗/∂A > 0.
We also have ∂b∗

∂A
> 0 for b < A and θ > 0 since

∂b∗

∂A
= −(det JG)−1

(
∂br
∂A

+
∂br
∂θ

∂θr
∂A

)
=

β(1− δ)θλγ(1− λ, θ)
1− β(1− δ)e−θ

> 0.(40)

Unemployment. Consider u∗ = u(θ∗). The steady state unemployment rate is
u(θ) = δ/(δ + m(θ)), which is clearly decreasing in θ since m′(θ) > 0 so u′(θ) < 0
for θ > 0. Since ∂θ∗

∂z
< 0, ∂θ∗

∂C
< 0, ∂θ∗

∂λ
> 0, and ∂θ∗

∂A
> 0 for b < A, if u′(θ) < 0 then

∂u∗

∂z
= du

dθ
∂θ∗

∂z
> 0, ∂u∗

∂C
= du

dθ
∂θ∗

∂C
> 0, ∂u∗

∂λ
= du

dθ
∂θ∗

∂λ
< 0 and ∂u∗

∂A
= du

dθ
∂θ∗

∂A
< 0 for b < A.

Output per capita. Consider y∗ = Y/L = y(θ∗). First, we can write output per
capita as follows: y(θ) = Ap(θ)(1 − u(θ)). Since p′(θ) > 0 and u′(θ) < 0, we have
y′(θ) > 0. Now, since ∂θ∗

∂C
≤ 0, we have ∂y∗

∂C
= ∂y

∂θ
∂θ∗

∂C
< 0 since dy

dθ
> 0. Next, ∂y∗

∂z
=

dy
dθ

∂θ∗

∂z
< 0 if b < A, since ∂θ∗

∂z
< 0. Finally, ∂y∗

∂A
= dy

dθ
∂θ∗

∂A
+ ∂y

∂A
where ∂θ∗

∂A
> 0, dy

dθ
> 0, and

∂y
∂A

> 0, and therefore ∂y∗

∂A
> 0. It remains only to show that ∂y∗

∂λ
> 0. We can write

y(θ) = Aγ(1−λ,θ)θλ
δ+m(θ)

for b < A. So ∂y∗

∂λ
= dy

dθ
∂θ∗

∂λ
+ ∂y

∂λ
, where ∂θ∗

∂λ
> 0 and dy

dθ
> 0, and it
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therefore suffices to show that ∂y
∂λ
> 0. Differentiating y(θ) with respect to λ yields

∂y

∂λ
=
Aθλ

(∫ θ
0
t−λe−t(ln θ − ln t)dt

)
δ +m(θ)

> 0.

Labor productivity. Consider p∗ = Ap(θ∗). If b < A, we have p(θ) = Aγ(1−λ,θ)θλ
1−e−θ .

Lemma 2 of Mangin (2017) establishes that if G is well-behaved then p′(θ) > 0. This
result applies when G is Pareto. We have ∂p∗

∂λ
= dp

dθ
∂θ∗

∂λ
+ ∂p

∂λ
where ∂θ∗

∂λ
> 0, so ∂p∗

∂λ
> 0

provided that ∂p
∂λ

> 0, which is true since ∂y
∂λ

> 0 from above. Next, we have ∂p∗

∂z
=

dp
dθ
∂θ∗

∂z
< 0 and ∂p∗

∂C
= dp

dθ
∂θ∗

∂C
< 0 since ∂θ∗

∂z
< 0 and ∂θ∗

∂C
< 0. Finally, ∂p∗

∂A
= dp

dθ
∂θ∗

∂A
+ ∂p

∂A
> 0

since ∂θ∗

∂A
> 0 and ∂p

∂A
> 0.

A.9 Proof of Proposition 3

For the Pareto distribution, we have the following:

(41)
x0µ(θ)

p(θ)
= ε(1− λ, θ)

and therefore when x0 = 1 (i.e. b < A) steady state labor share can be expressed as

(42) sL = 1− λ−
(

1− b

A

)
ε(1− λ, θ).

Differentiating s∗K = 1− s∗L with respect to z, we have

ds∗K
dz

= − 1

A

∂b∗

∂z
ε(1− λ, θ) +

(
1− b∗

A

)
∂θ∗

∂z

∂

∂θ
ε(1− λ, θ).

Substituting in ∂
∂x
ε(s, x) from Fact 6, where s = 1− λ and x = θ, we have

ds∗K
dz

= − 1

A

∂b∗

∂z
ε(1− λ, θ) +

(
1− b

A

∗) ∂θ∗

∂z

θ−λe−θ (1− λ− θ − ε(1− λ, θ))
γ(1− λ, θ)

.

Substituting in ∂b∗

∂z
from (27) and ∂θ∗

∂z
from (26), and using Fact 4, we have

ds∗K
dz

=
−θ−λe−θ(1− β(1− δ))

γ(1− λ, θ)(1− β(1− δ)e−θ)

(
θ +

e−θ(A− b) (1− λ− θ − ε(1− λ, θ))
λAθλ−2γ(2− λ, θ) + e−θ(A− b)

)
Rearranging and simplifying, we have

ds∗K
dz

< 0 if λAθλ−1γ(1− λ, θ) + e−θ(A− b) > 0,

which is true. Hence
ds∗K
dz

< 0 or equivalently
ds∗L
dz

> 0.
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A.10 Proof of Proposition 4

Using (42) and differentiating s∗K = 1− s∗L with respect to C, we have

ds∗K
dC

= − 1

A

∂b∗

∂C
ε(1− λ, θ) +

(
1− b

A

∗) ∂θ∗

∂C

∂

∂θ
ε(1− λ, θ).

Since ∂b∗

∂C
< 0 from (29), ∂

∂θ
ε(1 − λ, θ) < 0 by Fact 6, and ∂θ∗

∂C
< 0 from (28), we have

ds∗K
dC

> 0 or equivalently
ds∗L
dC

< 0.

A.11 Proof of Proposition 5

Again using (42) and differentiating with respect to A, we have

ds∗L
dA

=

(
1

A

db∗

dA
− b∗

A2

)
ε(1− λ, θ∗)−

(
1− b∗

A

)
∂θ∗

∂A

∂

∂θ
ε(1− λ, θ)

=
ε(1− λ, θ)

A

(
b∗

A
(εb∗(A)− 1)−

(
1− b∗

A

)
εθ∗(A)ηε(θ

∗)

)
and therefore

ds∗L
dA

> 0 if and only if

εb∗(A) >
A

b∗

(
1− b∗

A

)
εθ∗(A)ηε(θ

∗) + 1

where εb∗(A), the elasticity of b∗ with respect to A, is

εb∗(A) =
β(1− δ)θλγ(1− λ, θ)

1− β(1− δ)e−θ
A

b∗

and εθ∗(A), the elasticity of θ∗ with respect to A, is

εθ∗(A) =
(λ− µ)θλ−1γ(1− λ, θ) + e−θ

λAθλ−2γ(2− λ, θ) + e−θ(A− b)
A

θ∗
, where µ =

β(1− δ)θe−θ

1− β(1− δ)e−θ

and ηε(θ), the elasticity of ε(1− λ, θ) with respect to θ, is

ηε(1− λ, θ) = 1− λ− θ − ε(1− λ, θ).
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B Quantitative analysis

B.1 Estimation details

This Appendix provides additional details on the estimation presented in Section
4.4. The goal of that exercise is to use the calibrated model to estimate the underlying
aggregate TFP and investment-specific shocks. To do so, the linearized model is set
into state-space form and the time-paths of the two aggregate shocks are estimated
using the Kalman filter where the observable variables are real GDP and the unem-
ployment rate. Note that the model is calibrated to a monthly frequency. Therefore,
in the model, real GDP is measured as a 3-month average of aggregate output, ob-
served only every three months. The Kalman filter can conveniently deal with the
within-quarter months as missing observations. Unemployment, on the other hand, is
observed monthly and poses no additional complication for the estimation. Finally,
both variables are expressed in log-deviations from their respective HP-filter trends
(with a smoothing coefficient of 105 for quarterly GDP as in Shimer (2005) and a
smoothing coefficient of 105 ∗ 34 for monthly unemployment, using the adjustment
factor of Ravn and Uhlig (2002)).

An important by-product of estimating the model is that we obtain model-predicted
time series for all the variables in the model (using the Kalman smoother). For our
purposes, this means that we also obtain a model-predicted time-series for the aggregate
labor share. The latter is depicted, together with the observed data on the labor share,
taken from Rios-Rull and Santaeulalia-Llopis (2010), in Figure 5 in the main text.

Figure 1 shows the time-paths of other model variables predicted by the model and
compares them to those observed in the data. The fact that the model tracks closely
the business cycle fluctuations of several variables, not directly used in the estimation,
is reassuring. Only labor market tightness is somewhat less volatile than in the data
owing to the fact that the model underpredicts the volatility of vacancies.

B.2 Wage elasticities of new and existing workers

The model mechanism rests on the fact that the wages of newly hired workers are
more flexible (i.e. more responsive to TFP shocks) than the wages of existing workers.
This Appendix provides details on the estimation of the wage elasticities of new and
existing workers in the model.

Existing studies document that wages of newly hired workers are indeed more flex-
ible than those of existing employment relationships (see e.g. Bils, 1985; Haefke, Son-
ntag, and van Rens, 2013). The typical regression in these studies, estimating the wage
elasticity of new and existing workers, is given by

(43) ∆ logwj,t = αj + ηj∆ log(Yt/Nt) + εj,t,

where ∆ indicates first differences, wj,t are average wages of subgroup j of workers
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Figure 1: Labor market variables: data and model
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Notes: time-paths of variables in the “data” and in the model estimated using data on real GDP and
unemployment. All variables in log-deviations from their respective HP-filter trends.
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(j = all, new), αj is a group-specific intercept, Yt/Nt is (aggregate) labor productivity
and εj,t are group-specific residuals. The main coefficient of interest, the group-specific
wage elasticity, is ηj.

We follow the above methodology in our model. We simulate our model 1, 000
for 1, 600 periods, dropping the first 1, 000 periods in each simulation. This leaves us
with 600 periods, corresponding to 50 years of data, roughly the sample period used
in the above studies. Using this simulated data, we estimate the regression defined in
(43) in each of the 1, 000 simulations. As in the above studies, we define newly hired
workers as those with less than three months’ tenure. The values reported below are
the average values of ηj over the 1, 000 simulations.

The model predicts that while the wage elasticity for all workers is about one half,
ηall = 0.51, that of new hires is around 1.5 times higher, ηnew = 0.86. These values
are consistent with the range of estimates found in existing studies.4 Therefore, the
micro-founded distinction between new and existing matches – which is key to the
model’s dynamics – is not only qualitatively but also quantitatively plausible.
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