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Abstract

This paper develops a dynamic search and matching model in which heteroge-

neous firms compete directly to hire workers. The degree of firm competition at

the time of hiring simultaneously endogenizes both average match productivity

and the division of output between workers and firms. Because wages of existing

matches partly reflect past labor market conditions, a positive TFP shock leads

to a drop in the aggregate labor share, making it counter-cyclical. However,

greater competition decreases unemployment and increases labor’s share of out-

put among new firms. As more firms enter, the aggregate labor share rises and

eventually overshoots its initial level, as observed in the data.
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1 Introduction

What determines the aggregate income shares of workers and the owners of capital?

Historically, this question was considered so fundamental that in 1817 Ricardo called

it “the principal problem in Political Economy.”1 The relative constancy of the labor

share has for decades been seen as a stylized fact in macroeconomics, as evidenced by

the widespread usage of the Cobb-Douglas aggregate production function. Recently,

however, the labor share has been shown to fluctuate in a cyclical manner. In par-

ticular, Rios-Rull and Santaeulalia-Llopis (2010) show that the labor share responds

systematically to aggregate total factor productivity (TFP) shocks – a fact that has

dramatic implications for the dynamics of real business cycle models. This paper aims

to understand the mechanism behind such cyclical movements of the labor share.

Using U.S. data, Rios-Rull and Santaeulalia-Llopis (2010) document that the ag-

gregate labor share declines in response to a positive TFP shock – making it counter-

cyclical – but this drop quickly reverts and the labor share rises over time, eventually

overshooting its initial level. While the counter-cyclicality of the labor share is a feature

of standard search and matching models, the overshooting behavior has proven elusive

in both real business cycle models and search models (Choi and Rios-Rull, 2009).

Building on the basic framework of Mangin (2015), we develop a dynamic search

and matching model in which firms with heterogeneous productivities compete for

workers. In contrast to much of the existing literature, which assumes a particular

aggregate production function, the model simultaneously endogenizes both wages and

average match output. We incorporate both aggregate TFP and investment-specific

technology shocks and find that the framework yields rich yet analytically tractable

labor market dynamics that are consistent with the data. In particular, we show

that the model can account for both the counter-cyclicality of the labor share and its

overshooting behavior following an aggregate TFP shock.

Unlike Diamond-Mortensen-Pissarides (DMP) models with bilateral (one-on-one)

meetings, a key feature of the model is that a worker may be simultaneously approached

by two or more competing firms that directly compete to hire the worker. In such

multilateral (many-on-one) meetings, workers are hired by the most productive firm.

This endogenizes the average match output, or labor productivity, which is increasing in

the market tightness since workers can be more selective when there are more competing

1Ricardo (1911), p. 1 in the 1911 edition, first published in 1817.
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firms per worker. At the same time, wages also endogenously reflect the degree of

competition at the time of hiring. Specifically, wages in multilateral meetings are

equal to the productivity of the second most productive firm competing for a worker.

Therefore, in our model, production and wage determination are intimately linked.

This contrasts with DMP with Nash bargaining which rely on using an exogenous

bargaining parameter that is unrelated to the production technology.

We assume a Pareto distribution for firm productivity levels, which enables us

to analytically characterize the model’s dynamics, including those of the aggregate

labor share. In steady state, the labor share depends on the degree of competition for

workers, the reservation wage, the level of TFP, and the dispersion of firm productivity

levels. In particular, we show that the steady state labor share is increasing in the

level of TFP provided that the reservation wage is sufficiently responsive – a condition

that is satisfied under our calibration. The mechanism is intuitive: higher TFP leads to

greater firm entry and lower unemployment, thereby increasing the labor share through

stronger competition to hire workers and a higher reservation wage.

This steady state result suggests a positive relationship between aggregate TFP

and the labor share. However, we know that the labor share is counter-cyclical in

the data. In fact, the full dynamic model can account for both the counter-cyclicality

and the overshooting of the labor share. This highlights the importance of studying

its dynamics. To understand these dynamics, we need to consider the cohort effects

generated by firm competition for workers.

Outside the steady state, matches of various “vintages” coexist in every period.

Since both wages and match productivity are determined through the process of di-

rect competition to hire workers, both are influenced by the labor market conditions

prevailing at the time of hiring. As a result, the model generates cohort effects that

lead to rich dynamics for the labor share. In particular, the aggregate labor share is

influenced by the composition of the employment pool with respect to match vintages

(i.e. labor market conditions at the time of hiring). The systematic variation in the

composition of matches of various vintages is key for understanding the dynamics of

the aggregate labor share.

In a calibrated version of the model, we show that the aggregate labor share falls

in response to a positive TFP shock: the labor share is counter-cyclical. This happens

because wages of existing workers are partially rigid, since they reflect the degree

of competition at the time of hiring. However, following a positive TFP shock, the
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degree of competition between firms strengthens and unemployment falls because it is

now more attractive to hire workers. This, in turn, endogenously increases the labor

share of newly hired workers. Over time, as the composition of matches shifts towards

vintages formed in periods of stronger competition, the aggregate labor share rises and

eventually reaches a level higher than its initial one: the labor share overshoots.

We also investigate to what extent our model is able to explain the observed time

path of the U.S. labor share and how important are the novel features of our model

– namely, the competition and cohort effects – for achieving this. To do this, we use

the calibrated model and estimate the underlying aggregate shocks using data on real

GDP and unemployment. We show that the resulting model-predicted time series for

the labor share tracks the data very closely. Importantly, we conduct the same exercise

in a variant of our model, which retains the same equilibrium conditions but in which

we “switch off” the competition and cohort effects. The resulting time series for the

labor share is essentially uncorrelated with its counterpart in the data. Therefore, the

model’s key features – competition and cohort effects – are crucial for understanding

the time series pattern of the labor share that we observe in the data.

Finally, in addition to accounting for the dynamics of the labor share – the key

focus of this paper – we show that the calibrated model also performs well in repli-

cating business cycle patterns of other labor market variables. Moreover, the model

offers a set of new predictions that are absent in standard search and matching models.

While of independent interest, these also serve as supporting evidence for the under-

lying mechanism. First, the model predicts that the wage elasticity with respect to

aggregate labor productivity is larger for new hires than for existing workers, which

is consistent with the data (see e.g. Bils, 1985; Haefke, Sonntag, and van Rens, 2013;

Gertler, Huckfeldt, and Trigari, 2016). Second, the model predicts that labor pro-

ductivity features an overshooting pattern in response to investment-specific shocks,

as observed in the data (see e.g. Fisher, 2006; Canova, Lopez-Salido, and Michelacci,

2013). Finally, a key prediction of the model is the presence of firm and worker cohort

effects – driven by aggregate conditions at the time of hiring – which have also been

documented in the data (see e.g. Oreopoulos, Heisz, and von Wachter, 2012; Sedláček

and Sterk, 2016).

There has been a resurgence of interest in the labor share due to its recent trend

decline both in the U.S. and globally. In particular, King and Watson (2012) document

a sharp fall in the U.S. labor share during the 2000s. Elsby, Hobijn, and Şahin (2013)
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discuss this recent decline and identify globalization and offshoring as potentially im-

portant factors. Karabarbounis and Neiman (2014) document a global decline in the

corporate labor share since the early 1980s and attribute this to a fall in the relative

price of investment goods. Piketty (2014) and Piketty and Zucman (2014) suggest

the labor share decline arises from capital accumulation. This literature follows earlier

papers on medium-run changes in the labor share, including Blanchard (1997), who

examines the effects of labor market deregulation and changes in the degree of union-

ization, and Bentolila and Saint-Paul (2003), who consider the effects on the labor

share of changes in workers’ bargaining power, among other factors.

In contrast to the above studies, this paper focuses on the cyclical fluctuations of

the labor share. We do so by extending the static search and matching framework of

Mangin (2015) to a dynamic environment with aggregate shocks.2 The cyclical nature

of the labor share has received relatively less attention in the literature. In an earlier

contribution, Gomme and Greenwood (1995) argue that optimal labor contracting

between entrepreneurs and workers can explain the counter-cyclical behavior of labor’s

share at a quarterly frequency. Recently, Choi and Rios-Rull (2009) and Colciago and

Rossi (2015) suggest that, in addition to non-competitive wages, deeper insight into

the nature of the production technology may be necessary to understand both the

counter-cyclicality and the overshooting of the labor share. While the former study a

search and matching model with a C.E.S. production function, the latter consider a

model with counter-cyclical markups.

The remainder of this paper is structured as follows. Section 2 presents the model

and derives expressions for the dynamics of unemployment, output, and the labor

share. It provides a description of the wage determination mechanism and expressions

for wages and factor shares for arbitrary distributions of firm productivities, before

specializing to the Pareto distribution. Section 3 establishes the existence and unique-

ness of the steady state equilibrium and derives some comparative statics results. In

Section 4, we calibrate the model and present the quantitative results and analysis.

Section 5 concludes. All proofs are found in the Appendix.

2The search-theoretic model of the labor market in Mangin (2015) is related to the literature on
competing auctions, e.g. Peters and Severinov (1997), and the literature on directed and competitive
search. For a survey of the relevant literature, see Guerrieri, Julien, Kircher, and Wright (2016).

4



2 Model

There is an infinite number of discrete time periods. In each period, there is a

continuum of homogeneous risk-neutral workers of measure L. At the start of period

t, there is a continuum of measure Ut of unemployed workers and a continuum of risk-

neutral potential firms. The measure of entering firms is Vt and the ratio of entering

firms to unemployed workers is φt = Vt/Ut. Both workers and firms discount future

payoffs using a discount factor β ∈ (0, 1).

To enter, potential firms must pay a cost Ct, the cost of purchasing one unit of

capital. We interpret exogenous shocks to Ct as investment-specific technology shocks.

After paying the cost Ct, all firms search for a worker.

Firms approach unemployed workers at random. For the sake of tractability, work-

ers who are already employed cannot be targeted by firms: there is no on-the-job

search. After meeting with a worker, firms privately draw an idiosyncratic permanent

match-specific productivity x from a distribution with cdf G(x).3

Assumption 1. The underlying distribution of firm productivities has cdf G(x), pdf

g(x), support [xmin,∞) where xmin ≥ 0, a finite mean, and no mass points.

Not all matches may be acceptable for both workers and firms: only matches with

permanent productivity x ≥ xct for some cut-off productivity xct are accepted by both

workers and firms in period t. Firms with productivity x ≥ xct will compete to hire

workers; firms with productivity x ≤ xct exit immediately.4

The labor market tightness θt is defined as the ratio of competing firms to unem-

ployed workers, θt ≡ φt(1 − G(xct)). The number of competing firms approaching a

given unemployed worker in period t is a Poisson random variable with parameter θt.

If a firm with permanent productivity x hires a worker, the match produces output

in period t equal to Atx where At is an exogenous shock that hits the economy at the

start of period t. We refer to At as an aggregate TFP shock.

Matches are destroyed at the start of each period at an exogenous rate δ ∈ (0, 1].5

For tractability, we assume that once a worker and a firm agree to form a match, it can

only terminate through exogenous match destruction.6 When a match is destroyed,

3If firms draw productivities before deciding whether to search for a worker, the results are identical.
4We show in the Appendix that there exists a unique cut-off productivity xct such that all matches

with permanent productivity x ≥ xct are acceptable to both workers and firms in period t.
5Match destruction applies to matches existing at the start of the previous period, not new hires.
6In the calibrated version of our model, we verify that the surplus of all matches is always positive.
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the worker becomes unemployed and the firm’s capital is destroyed.

Since the number of firms competing for each worker is a Poisson random variable,

any given meeting between workers and firms can be either bilateral (i.e. exactly one

competing firm) or multilateral (i.e. two or more competing firms).

In a multilateral meeting in period τ , firms compete to hire the worker. The highest

productivity firm hires the worker and in each period t ≥ τ until match destruction

it produces output Atx
1 where x1 is the permanent productivity of the most produc-

tive firm. Since there are competing offers, the worker is paid Atx
2 where x2 is the

permanent productivity of the second most productive firm competing for that worker.

In a bilateral meeting in period τ , where the firm has permanent productivity x,

the firm hires the worker and in each period t ≥ τ until match destruction it produces

output Atx. Since the worker has no other wage offers, he is simply paid his reservation

wage bτ at the time of hiring each period until match destruction.

If no firms approach an unemployed worker in period t, he receives the value of

non-market activity z ∈ [0, xmin] and stays unemployed. For simplicity, we assume

that a firm’s capital is destroyed when it is unsuccessful in hiring.

2.1 Unemployment, productivity, output, and factor shares

Since the number of competing firms targeting each unemployed worker during

period t is a Poisson random variable with parameter θt, the meeting technology is

urn-ball and therefore the matching probability for unemployed workers and competing

firms respectively is m(θt) = 1− e−θt and q(θt) ≡ m(θt)/θt.

The measure of unemployed workers Ut at the start of period t evolves according

to the following standard law of motion:

Ut+1 = Ut(1−m(θt)) + δ(L− Ut) (1)

and the measure of employed workers Nt at the start of period t evolves according to

Nt+1 = (1− δ)Nt +m(θt)Ut. (2)

The measure of existing matches that survive match destruction at the start of period

t + 1 is (1 − δ)Nt and the measure of new hires created in period t is ht ≡ m(θt)Ut.

The unemployment rate ut at the start of period t is given by ut = Ut/L.
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2.1.1 Endogenous match output

In any given period, workers who are initially unemployed will either form a match

with permanent productivity x or they will remain unemployed and produce zero out-

put that period. We can derive the endogenous distribution of permanent match pro-

ductivities x across workers who are initially unemployed at the start of period t.

First, we define the (truncated) distribution of productivities among competing

firms, Gc
t(x) ≡ Pr(X < x|x ≥ xct). The minimum of this distribution is x0t ≡

max{xmin, x
c
t} since only firms with productivity greater than xct compete.

Suppose that n firms compete to hire a given worker in period t. The cdf of a

worker’s output conditional on n firms competing is Ht(x|n) = (Gc
t(x))n, the distri-

bution of the maximum of n draws from Gc
t(x). To obtain Ht(x; θt), the endogenous

distribution of productivities x across all workers initially unemployed at time t, the

conditional cdf Ht(x|n) is weighted by the Poisson probability that n firms compete:

Ht(x; θt) =
∞∑
n=0

θnt e
−θt

n!
(Gc

t(x))n = e−θt(1−G
c
t (x)) (3)

The distribution Ht(x; θt) = e−θt(1−G
c
t (x)) automatically builds in the possibility of

unemployment, since the mass point at x = 0 with probability mass 1−m(θt) = e−θt

represents initially unemployed workers who remain unemployed (i.e. who are not

matched at time t). We can also define He
t (x; θt) ≡ Ht(x; θt)/m(θt), the distribution of

productivities across workers who are newly employed at time t.

We can define p(θτ ) ≡ EHe
t
(x), the expected permanent productivity of a worker/firm

match created at time τ , given by

p(θτ ) =

∫ ∞
x0τ

x dHe
τ (x; θτ ). (4)

Since p(θτ ) ≡ EHe
τ
(x) whereHe

τ (x; θτ ) is defined above, expected match productivity

depends on labor market conditions at the time τof match creation. This includes both

the cut-off productivity xcτ and the market tightness θτ , which affect match productivity

though two different channels. Greater market tightness means greater competition

between firms to hire workers, which allows workers to be more selective regarding firms

and increases the average match productivity. A greater cut-off productivity xcτ means

that only more productive firms enter, increasing the average match productivity.
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2.1.2 Aggregate output

With aggregate productivity shocks, the output of a match at time t is Atx where

x is the permanent component of match productivity and At is the aggregate TFP

shock at time t. The expected output at time t across all matches formed in period τ

is given by Atp(θτ ). We call this the labor productivity of cohort τ .

Aggregate output Yt during period t is given by the following:

Yt = At

∞∑
a=0

υt,t−ap(θt−a) (5)

where υt,t−a ≡ (1 − δ)aht−a, the cohort measure at time t of matches of age a that

are still active. The expression for aggregate output Yt weights the labor productivity

Atp(θt−a) for matches created during period t − a by the cohort measure υt,t−a. The

model has “vintage” features since matches of age a are permanently affected by the

labor market conditions at the time of hiring.

2.1.3 Aggregate labor share

Letting w̃t,τ be the average wage during period t for a worker hired during time τ ,

the average labor share s̃L,t,τ during period t for matches created during time τ is

s̃L,t,τ =
w̃t,τ

Atp(θτ )
. (6)

The aggregate labor share sL,t during time t is therefore

sL,t =

∑∞
a=0 υt,t−aw̃t,t−a

Yt
. (7)

We can also express the aggregate labor share as a weighted average of the cohort-

specific labor shares sL,t,τ . Let υ̃t,τ be the output share at time t of cohort τ ,

υ̃t,τ =
υt,τAtp(θτ )

Yt
. (8)

Clearly, we have
∑∞

a=0 υ̃t,t−a = 1. Substituting (8) into (7) and using (8), we have

sL,t =
∞∑
a=0

υ̃t,t−asL,t,t−a. (9)

That is, the aggregate labor share is a weighted average of the cohort-specific labor
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shares sL,t,τ , where each cohort τ is weighted by its output share υ̃t,τ .

2.2 Asset value equations

Letting V u
t be the value of unemployment at time t, the expected value V e

t,τ of

employment in period t in a match formed during period τ is

V e
t,τ = w̃t,τ + β((1− δ)EtV e

t+1,τ + δEtV u
t+1), (10)

and the value of unemployment V u
t is given by

V u
t = m(θt)V

e
t,t + (1−m(θt))(z + βEtV u

t+1). (11)

Letting Jt,τ be the expected value in period t of a filled vacancy when the match

was created in period τ , we have

Jt,τ = Atp(θτ )− w̃t,τ + β(1− δ)EtJt+1,τ . (12)

Since q(θτ ) is the probability a competing firm successfully hires a worker, the value

Vτ of an unfilled vacancy (at the time of entry τ) is

Vτ = −Cτ + (1−G(xcτ ))q(θτ )Jτ,τ . (13)

2.3 Wage determination

In this environment, both the permanent match productivity and wages depend

crucially on whether or not there is direct competition to hire the worker at the time of

match creation, i.e. on whether the meeting is bilateral or multilateral. Since the num-

ber of firms approaching a given worker is a Poisson random variable with parameter

θ, whether a worker faces a bilateral or a multilateral meeting is random. However, the

proportion of bilateral meetings, µ(θ) ≡ θe−θ/m(θ), is endogenous. Since µ′(θ) < 0,

greater firm competition implies a lower share of bilateral meetings.

Suppose a worker is hired in a bilateral meeting (i.e. exactly one competing firm) in

period τ . The worker is simply paid his reservation wage bτ every period until match

destruction. The reservation wage bτ is the lowest wage offer the worker is willing to

accept: it satisfies the indifference condition (14) that equates the expected payoff from

accepting the wage offer and rejecting it. That is,
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V 1
τ,τ (bτ ) = z + βEτV u

τ+1, (14)

where the value V 1
t,τ (w) at time t of being employed at wage w in a bilateral match

formed in period τ is

V 1
t,τ (w) = w + β((1− δ)EtV 1

t+1,τ (w) + δEtV u
t+1). (15)

The expected value at time t of the filled vacancy with permanent productivity x

that was created in a bilateral meeting during period τ is

J1
t,τ (x) = Atx− bτ + β(1− δ)EtJ1

t+1,τ (x). (16)

Suppose a worker is hired in a multilateral meeting (i.e. two or more competing

firms) in period τ . The firm with the highest productivity x hires the worker and

pays a wage equal to the second-highest productivity, indexed by the aggregate TFP

shock At, each period until match destruction.7 More precisely, the expected value of

employment in period t in a match with permanent productivity x for a worker hired

in a multilateral meeting in period τ is

V 2
t,τ (x) = w2

t,τ (Atx) + β((1− δ)EtV 2
t+1,τ + δEtV u

t+1), (17)

where w2
t,τ (Atx) is the expected wage in period t. The expected value of employment

in period t in any match formed in a multilateral meeting in period τ is

V 2
t,τ = w̃2

t,τ + β((1− δ)EtV 2
t+1,τ + δEtV u

t+1), (18)

where w̃2
t,τ is the expected wage at time t for a worker hired in such a meeting. The

expected value at time t of the filled vacancy with permanent productivity x that was

created in a multilateral meeting during period τ is

J2
t,τ (x) = Atx− w2

t,τ (Atx) + β(1− δ)EtJ2
t+1,τ (x). (19)

In the Appendix, we verify that for all t there exists a unique cut-off productivity

xct such that all matches formed in period t with x ≥ xct are accepted by both workers

and firms, and we show that xct satisfies J1
t,t(x) = 0.

7This wage determination mechanism is similar to Bertrand competition or second-price auctions.
For a more detailed microfoundation and a discussion of the relevant literature see Mangin (2015).
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2.3.1 Expected wages and labor share

Firm profits consist of both productivity rents and matching rents, as discussed in

Mangin (2015). In the dynamic setting here, we derive in the Appendix the following

expression for the expected value of a filled vacancy:

Jt,τ = πt,τ (θτ )︸ ︷︷ ︸
productivity rents

+µ(θτ )(Atx0τ − bτ )︸ ︷︷ ︸
matching rents

+β(1− δ)EtJt+1,τ , (20)

where µ(θτ ) is the share of bilateral meetings at time τ, and πt,τ (θτ ) is the expected

value of productivity rents at time t for a match formed in period τ , defined by

πt,τ (θτ ) ≡
∫ ∞
Atx0τ

(
1−Gt,τ (y)

ygt,τ (y)

)
ydHe

t,τ (y; θτ ), (21)

where Gt,τ (y) ≡ Gc
τ (y/At), and He

t,τ (y; θτ ) ≡ He
τ (y/At; θτ ).

Productivity rents πt,τ (θτ ) arise because successful firms receive the difference be-

tween the highest and second highest productivity among the firms competing to hire

the worker at time τ of hiring, multiplied by the current TFP shock At. The expected

value of the productivity rents available to firms depends on properties of the under-

lying distribution G and is captured by (21). When there is no heterogeneity in firm

productivities, i.e. when G(x) is degenerate, πt,τ (θτ ) = 0.

Matching rents reflect the flow match surplus for the least productive firm. Even

if a competing firm has the lowest possible productivity x0τ , it can still earn profits if

matched with a worker in a bilateral meeting. The value of matching rents in period

t for matches created in period τ is Atx0τ − bτ , which is reflected in the second term

inside the brackets in (20). With aggregate productivity shocks, matching rents can in

principle be either positive or negative in period t depending on the realization of the

shock At. When Atx0τ − bτ = 0, there are no matching rents.

Using (12) and (20), expected wages w̃t,τ at time t of a match created at time τ is

w̃t,τ = Atp(θτ )︸ ︷︷ ︸
expected match output

− πt,τ (θτ )︸ ︷︷ ︸
productivity rents

−µ(θτ )(Atx0τ − bτ )︸ ︷︷ ︸
matching rents

. (22)

Next, using (6), the labor share s̃L,t,τ at time t for matches created in period τ is

s̃L,t,τ = 1− πt,τ (θτ )

Atp(θτ )︸ ︷︷ ︸
productivity rents

− µ(θτ )(Atx0τ − bτ )
Atp(θτ )︸ ︷︷ ︸

matching rents

, (23)
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where p(θτ ) is given by (4). In expression (23), productivity rents and matching rents

are expressed as a share of match output. Using (7), the aggregate labor share is

sL,t = 1−
∑∞

a=0 υt,t−aπt,t−a(θt−a)

Yt︸ ︷︷ ︸
productivity rents

−
∑∞

a=0 υt,t−aµ(θt−a)(Atx0t−a − bt−a)
Yt︸ ︷︷ ︸

matching rents

. (24)

Essentially, the aggregate capital share sK,t at time t is equal to the sum of both

productivity rents and matching rents earned by firms in each cohort τ = t−a, weighted

by the relevant cohort measure υt,t−a and then expressed as a share of output. The

aggregate labor share is sL,t = 1− sK,t, which is given by (24).

2.3.2 Equilibrium definition

We can now present a formal definition of an equilibrium.

Definition 1. Given exogenous stochastic processes for the two aggregate shocks At

and Ct, an equilibrium is a sequence {φt, xct , bt, Ut} which satisfies

• the free entry condition, Vt,t = 0, i.e. Ct = (1−G(xct))q(θt)Jt,t,

• the firm indifference condition, J1
t,t(x

c
t) = 0,

• the worker indifference condition, V 1
t,t(bt) = z + βEtV u

t+1, and

• the law of motion (1) for unemployment Ut,

where θt = φt(1−G(xct)), Jt,t is given by (20), J1
t,t(x) is given by (16), V 1

t,t(w) is given

by (15), and V u
t is given by (11).

2.4 Pareto distribution

To obtain tractable expressions for aggregate output, wages, and factor income

shares we focus on the Pareto distribution G(x). Let G(x) = 1− x−1/λ for x ∈ [1,∞)

and G(x) = 0 otherwise. The parameter λ ∈ (0, 1) is called the shape parameter and

it governs the degree of productivity dispersion. For simplicity, we assume that λ is

constant. Both the mean and the variance of G(x) are increasing in λ.8

8The mean of this distribution is 1/(1− λ). The variance is defined only for λ < 1/2.
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Given the reservation wage bt, the (truncated) distribution of competing firms’

permanent productivity levels, Gc
t(x), remains Pareto, Gc

t(x) = 1 −
(

x
x0t

)−1/λ

where

x0t ≡ max{1, xct}. For the Pareto distribution, we have

Ht(x; θt) =

 e
−θ

(
x
x0t

)−1/λ

if x ∈ [x0t,∞)

e−θt otherwise
(25)

Except for the mass point at zero, the distribution Ht(x; θt) is similar to a Type II

Extreme Value Distribution or Fréchet distribution. This is useful because it means

that the distribution of realized match productivities is approximately Fréchet, and

this distribution is often used to represent the firm productivity distribution.9

To determine expected wages, the Pareto distribution has the useful property that

πt,τ (θτ ) = λAtp(θτ ) for all t and τ .10 Intuitively, this means that a firm’s expected

productivity rents are linear in match output. Substituting into (22) yields

w̃t,τ = (1− λ)Atp(θτ )︸ ︷︷ ︸
expected output minus productivity rents

−µ(θτ )(Atx0τ − bτ )︸ ︷︷ ︸
matching rents

. (26)

Next, using (6), labor’s share s̃L,t,τ during period t for matches created in period τ is

s̃L,t,τ = 1− λ︸︷︷︸
productivity rents

− µ(θτ )(Atx0τ − bτ )
Atp(θτ )︸ ︷︷ ︸

matching rents

, (27)

Substituting πt,τ (θτ ) = λAtp(θτ ) into (24), the aggregate labor share sL,t at time t is

sL,t = 1− λ︸︷︷︸
productivity rents

−
∑∞

a=0 υt,t−aµ(θt−a)(Atx0t−a − bt−a)
Yt︸ ︷︷ ︸

matching rents

. (28)

Since average productivity rents are a constant fraction of output, the aggregate labor

share simply equals a constant term 1−λ minus the sum of matching rents – weighted

by the relevant cohort measure – as a share of output.

Labor’s share sL,t is constant (i.e. depends only on the parameter λ) in a given

period t if and only if xcτ ≥ xmin and therefore x0τ = xcτ , and, in addition xcτ = bτ/At for

all cohorts τ . In this case, the value of matching rents, Atx0τ − bτ , is always zero and

9The Fréchet extreme value distribution is found in Kortum (1997), Eaton and Kortum (1999),
and Eaton and Kortum (2002).

10This is because the Pareto distribution has the unique property that (1−Gt,τ (y))/(ygt,τ (y)) = λ.
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labor’s share is constant because the average productivity rents are linear in output.

Clearly, this extreme case is not possible in the presence of aggregate TFP shocks.

Even for a given cohort τ , labor’s share sL,t,τ can only be constant in rare periods

where matching rents, Atx0τ − bτ , are zero. Therefore, with TFP shocks, both the

aggregate labor share and cohort-specific labor shares always fluctuate over time.

3 Steady state

Consider a stationary environment where At = A, zt = z and Ct = C for all t. Let

Ut+1 = Ut = U and θt+1 = θt = θ for all t. Let G(x) = 1 − x−1/λ for x ∈ [1,∞) and

G(x) = 0 otherwise, i.e. xmin = 1. Given the reservation wage b, the distribution of

competing firms’ productivity levels is Gc(x) = 1 −
(
x
x0

)−1/λ

where x0 = max{1, xc}.
In the steady state, we have J1(xc) = 0 if and only if xc = b/A.11

Steady state average match productivity is

p(θ) =
x0γ(1− λ, θ)θλ

1− e−θ
, (29)

where γ(s, x) is the Lower Incomplete Gamma Function defined by γ(s, x) ≡
∫ x

0
ts−1e−tdt.12

Average match productivity p(θ) is increasing in θ (taking b as given). Since the Pareto

distribution is well-behaved, this follows from Proposition 4 in Mangin (2015).

Steady state output is given by

Y =
Ax0γ(1− λ, θ)θλU

δ
. (30)

We can interpret expression (30) as an aggregate production function. To under-

stand it better, consider the special case where δ = 1 and b ≤ A. Since each firm has one

unit of capital, K = V in this case and U = L, so we have Y = Aγ(1−λ, θ)KλL1−λ. In

the limit where θ →∞ and unemployment disappears, this function is asymptotically

Cobb-Douglas, Y = AΓ(1− λ)KλL1−λ, where Γ(s) is the Gamma function.13

11Using (16), J1(x) = (Ax− b)/(1− β(1− δ)) and hence J1(x) = 0 if and only if x = b/A.
12See the Appendix for some useful properties of the function γ(s, x).
13This limiting aggregation result is related to Jones (2005), who derives a Cobb-Douglas aggregate

production function using a Pareto distribution of ideas. Lagos (2006) also derives a Cobb-Douglas
aggregate production function using the Pareto distribution in a Mortensen-Pissarides style search-
theoretic model with random matching and Nash bargaining. See Mangin (2015) for details.
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3.1 Steady state factor shares

Steady state labor share sL is

sL = 1− λ− µ(θ)(Ax0 − b)
Ap(θ)

. (31)

Steady state factor shares are “constant” (i.e. depend only on λ) in two special

cases. First, there is an asymptotic result: factor shares are constant in the limit as

θ → ∞ and unemployment disappears. In this case, all firms face direct competition

and the probability of receiving matching rents disappears because the share of bilateral

meetings goes to zero, i.e. µ(θ)→ 0. Second, factor shares are constant when x0 = b/A.

Since x0 = max{1, xc}, this means that factor shares are constant when xc = b/A ≥
xmin = 1, i.e. when b ≥ A. In this case, the value of matching rents disappears since

Ax0 − b = 0. While the first case cannot arise as an equilibrium outcome, the second

case can in principle arise as an equilibrium outcome.14

The constancy of steady state factor shares in both special cases arises from the

fact that π(θ) = λAp(θ). That is, productivity rents – equal to the expected difference

between the highest and the second highest productivity among competing firms –

are a constant fraction of the expected match output.15 This result applies only in

the steady state. As discussed in Section 2.4, the existence of aggregate productivity

shocks At implies that factor shares always fluctuate regardless of the reservation wage.

Lemma 1. Steady state labor share is increasing in the degree of firm competition θ.

In general, steady state labor share is increasing in the degree of firm competition,

as measured by the market tightness θ (taking b as given). Intuitively, as the number of

competing firms per unemployed worker θ rises, greater competition leads to an increase

in labor’s share. In particular, the share of bilateral meetings is lower (µ′(θ) < 0) so

the probability of direct competition to hire a worker is greater. At the same time,

average match productivity p(θ) increases and therefore µ(θ)/p(θ) is decreasing in θ.

It is clear that labor’s share is increasing in the reservation wage b (taking θ as

given) since in bilateral meetings workers are paid more when their reservation wage is

higher, thereby decreasing the value of the matching rents, Ax0− b, available to firms.

14In Section 3.2, we will see that this is because as θ → ∞ and hence φ → ∞, we have br(φ) > b̄
but φr(b) = 0 when b > b̄.

15Importantly, this property is unique to the Pareto distribution. If G(x) is not Pareto, this is not
the case and therefore factor shares are not constant when b ≥ A. For example, in the Appendix we
derive an expression for the steady state labor share using the Generalized Pareto Distribution.
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3.2 Steady state equilibrium

A steady state equilibrium can be characterized by a triple (φ, b, U) that satisfies

Definition 1 where xc = b/A and θ = φ(1−G(xc)).

For the Pareto distribution, the zero profit condition for firms is

C =
x
−1/λ
0 q(θ) (π(θ) + µ(θ)(Ax0 − b))

1− β(1− δ)
. (32)

In the Appendix, we show that Assumption 2 implies that there is a critical value

b̄(λ, β, δ, C) > z such that for any b < b̄, there exists a unique level of firm entry

φ > 0 which satisfies (32). If b ≥ b̄, there is no firm entry and hence φ = θ = 0. So

for any given b ≥ 0, there is a unique level of firm entry φ and we have a function

φr : R+ → R+. When b < b̄, this function is differentiable and we show that φ′r(b) < 0.

Since φ = 0 when b ≥ b̄, φr is weakly decreasing in b.

Assumption 2. The cost of purchasing capital is not too high:

C <
1

1− β(1− δ)

(
A

1− λ
− z
)
. (33)

Let V u be the steady state value of unemployment and let V 1(w) be the steady

state value of employment at wage w in a bilateral meeting. In a bilateral meeting,

unemployed workers will accept a job offer at wage w if V 1(w) ≥ z+βV u and reject it

otherwise. In the Appendix, we verify that for any given φ ≥ 0, there exists a unique

reservation wage b that satisfies the indifference condition:

V 1(b) = z + βV u. (34)

So we have a function br : R+ → R+, and we verify that b′r(φ) > 0 for all φ.

Substituting V 1(b) and V u from (15) and (11), into (34) yields the following ex-

pression for the steady state reservation wage,

b =
z(1− β(1− δ)) + β(1− δ)w(θ, b)

1− β(1− δ)e−θ
, (35)

where w(θ, b) ≡ w̃m(θ). The reservation wage b is a weighted average of the flow

value z of non-market activity and the expected wage for all workers (including the

unemployed). It is clear from (35) that when φ = θ = 0, we have br(0) = z.

Proposition 1. There is a unique steady state equilibrium (φ∗, b∗) where z ≤ b∗ < b̄.
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We know that for any given φ ≥ 0, (34) has a unique solution br(φ). At the same

time, we know that for any given b < b̄, (32) has a unique solution φr(b), and if b ≥ b̄

we have φr(b) = 0. Since the function br is increasing in φ, and φr is decreasing in b,

there exists a unique steady state equilibrium (φ∗, b∗) that satisfies both (34) and (32).

Since br(0) = z and b′r(φ) > 0, we have br(φ) ≥ z for all φ.

3.3 Comparative statics

Proposition 2 contains some comparative statics results regarding the effects of the

key parameters – the value of non-market activity z, the cost of purchasing capital

C, and the shape parameter λ from the underlying productivity distribution – on the

equilibrium (φ∗, b∗), as well as on the steady state equilibrium unemployment rate,

u∗ ≡ u(θ∗), output per capita y∗ ≡ Y/L, and labor productivity p∗ ≡ Y/N. We focus

on the case where b∗/A < xmin = 1 and therefore x0 = 1 and θ∗ = φ∗ because we are

primarily interested in the behavior of factor shares.16

Proposition 2. If b∗ < xmin, then: (i) workers’ reservation wage b∗ is increasing in

λ, z, and A, and decreasing in C; (ii) the labor market tightness θ∗ is decreasing in z

and C, and increasing in λ and A; (iii) the unemployment rate u∗ is increasing in both

z and C, and decreasing in λ and A; (iv) output per capita is decreasing in z and C,

and increasing in λ and A; and (v) labor productivity p∗ is decreasing in z and C, and

increasing in λ and A.

Intuitively, an increase in the value of non-market activity z leads to a direct increase

in the reservation wage and a resulting decrease in the market tightness. An increase

in the cost of capital C leads to a decrease in the market tightness as less firms enter,

resulting in a decrease in the reservation wage. In both cases, less firm competition

results in higher unemployment as well as lower labor productivity and lower output

per capita. By contrast, in increase in the level of TFP A leads to an increase in the

reservation wage and an increase in the market tightness. In this case, greater firm

competition results in lower unemployment as well as higher labor productivity and

higher output per capita. The effects of a change in the shape parameter λ are subtle.

Propositions 3, 4, and 5 provide some comparative statics for the labor share.

Proposition 3. Steady state labor share s∗L is increasing in the flow value of non-

market activity z.

16In the calibration in Section 4, this turns out to be the relevant case.
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An increase in the value of non-market activity z leads to an increase in the reser-

vation wage, which has a positive direct effect on the labor share. There is also a

negative indirect effect on the labor share through the labor market tightness, since a

higher z decreases the level of firm entry, which has a negative impact on the labor

share. Overall, the positive effect dominates and the labor share is increasing in z.

Proposition 4. Steady state labor share s∗L is decreasing in the capital cost C.

When the cost of capital C increases, there is an indirect effect on the labor share

through the market tightness θ. A higher cost C means that entry is less attractive

for firms, decreasing θ. This has a negative effect on the labor share since there is less

competition for workers. Overall, equilibrium labor share is decreasing in the cost C.

3.3.1 Effect on labor share of an increase in TFP

An increase in the level of TFP A influences the steady state labor share through

two distinct channels. The first is through θ∗. Since θ∗ is increasing in A by Proposition

2, and µ(θ)/p(θ) is decreasing in θ by Lemma 1, there is a positive effect on labor share

through θ∗. The second is through the term b∗/Ax0 in (31). If this term increases

when A does, there is a positive impact on labor share. If this term decreases when A

does, there is a negative impact on labor share. Overall, the effect of A on labor share

depends on the degree of sensitivity of the reservation wage b∗ to changes in A.

Before presenting a result regarding the effect of a change in the level of TFP A on

the equilibrium labor share, we define some terms. Let εb∗(A) be the elasticity of b∗

with respect to A, let εθ∗(A) be the elasticity of θ∗ with respect to A, and let ηε(θ) be

the elasticity of µ(θ)/p(θ) with respect to θ.17

Proposition 5. The equilibrium labor share s∗L is increasing in the level of TFP A if

and only if the reservation wage is sufficiently responsive to A:

εb∗(A) >
A

b∗

(
Ax0 − b∗

Ax0

)
εθ∗(A)ηε(θ

∗) + 1 (36)

Since µ(θ)/p(θ) is decreasing in θ, we have ηε(θ
∗) < 0 while εθ∗(A) > 0, so a

sufficient condition for labor share s∗L to be increasing in A is that εb∗(A) > 1. Using

the calibration in Section 4, we find that condition (36) holds at the steady state

17In the Appendix, we provide analytic expressions for εb∗(A), εθ∗(A), and ηε(θ
∗).
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equilibrium. In fact, we find that εb∗(A) = 1.41, so the sufficient condition easily

holds. Therefore, the steady state equilibrium labor share is increasing in TFP.

Later, when we calibrate the model and describe its dynamics in Section 4, we will

see that this is similar to the impact of a positive TFP shock on new hires, but the

effect on existing matches is different. As we will see, the different effects of a TFP

shock on new vs existing matches gives rise to rich dynamics for the labor share.

3.3.2 Effect on labor share of a change in distribution G

We now consider the effect on the steady state equilibrium labor share of a change

in the underlying productivity distribution G. For the Pareto distribution, we can

change the distribution G by varying the shape parameter λ, which is a simple proxy

for the degree of firm heterogeneity or productivity dispersion.18

When b ≥ A, we have sL = 1 − λ and labor’s share is clearly decreasing in λ.

However, when b < A the net effect is ambiguous. We can decompose the net effect into

two opposing effects. For simplicity, we express it in terms of capital share, s∗K = 1−s∗L.

ds∗K
dλ

=
d

dλ
(λ)︸ ︷︷ ︸

> 0 productivity rents

+(Ax0 − b∗ )
d

dλ

µ(θ∗)

Ap(θ∗)︸ ︷︷ ︸
< 0

−∂b
∗

∂λ︸ ︷︷ ︸
< 0

µ(θ∗)

Ap(θ∗)

︸ ︷︷ ︸
< 0 matching rents

. (37)

The productivity rents earnt by firms, as a share of output, are clearly increasing in

λ. For the Pareto distribution, productivity rents as a share of output are simply equal

to the tail index parameter λ. This is intuitive: greater firm heterogeneity implies

a greater expected value of the difference between the highest and second highest

productivity, as a share of output.

The overall effect of λ on matching rents, as a share of output, is negative. First,

∂b∗/∂λ > 0 by Proposition 2, so the impact on matching rents through b∗ is negative.

Intuitively, workers increase their reservation wage when λ increases, which decreases

the value of matching rents, Ax0 − b∗, available to firms. Second, we have

18Strictly speaking, an increase in λ is not a mean-preserving spread in G since it increases both
the mean and variance. We have verified numerically, however, that the comparative static results are
the same if we normalize xmin = 1− λ so that an increase in λ is a true mean-preserving spread.
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d

dλ

µ(θ∗)

Ap(θ∗)
=

> 0︷︸︸︷
∂θ∗

∂λ

< 0︷ ︸︸ ︷
∂

∂θ

µ(θ∗)

Ap(θ∗)︸ ︷︷ ︸
< 0 indirect effect

+
∂

∂λ

µ(θ∗)

Ap(θ∗)︸ ︷︷ ︸
< 0 direct effect

. (38)

Since equilibrium market tightness θ∗ is increasing in λ by Proposition 2, and µ(θ)/p(θ)

is decreasing in θ according to Lemma 1, there is a negative indirect effect on matching

rents of an increase in λ through θ. The direct effect of an increase in λ on matching

rents is also negative since the denominator is increasing in λ.

Overall, the net effect on labor’s share of an increase in λ depends on the relative

size of the opposing effects on productivity rents and matching rents. Mangin (2015)

provides a sufficient condition for equilibrium labor share to be increasing in λ in a

static setting: the value of matching rents cannot be too high. If this condition is

satisfied, the positive effect on productivity rents of an increase in the parameter λ

dominates the negative effect on matching rents. However, this condition only applies

in a static environment where b∗ = z. In this case, ∂b∗/∂λ equals zero and the second

component of matching rents in (37) disappears.

In a dynamic environment where the reservation wage b∗ is endogenous, the effect of

λ on labor’s share is more complicated because the value of matching rents, Ax0 − b∗,
is also endogenous. We cannot obtain simple analytical results; however, using the

calibration described in Section 4, we find that expression (37) is positive and therefore

the steady state equilbrium labor share is decreasing in the parameter λ.

4 Quantitative analysis

In this section, we analyze the model quantitatively with a particular focus on labor

share dynamics. Section 4.1 describes the calibration and the model’s performance

along several dimensions related to the labor market. The remaining sections describe

the model’s dynamics, zooming in on the behavior of the labor share. Section 4.2

describes the model’s dynamics using impulse response functions (IRFs) to the two

aggregate shocks. Section 4.3 considers the business cycle fluctuations in the labor

share and, in particular, its dynamics following TFP shocks. Finally, Section 4.4

examines to what extent the model can account for the observed time path of the U.S.

labor share. To do this, we use our calibrated model to estimate the underlying shocks.
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Table 1: Calibrated parameters and their respective targets

parameter value target/source

household and labor market

β discount factor 0.996 annual interest rate 4%
z value of non-market activity 0.320 labor share 68%, RS (2010)
δ separation rate 0.050 unemployment rate 5.8%, BLS

C vacancy posting cost 6.361 job finding rate 45%, Shimer (2005)

firm productivity distribution G(x)

xmin minimum 1 normalization
λ shape parameter 0.27 90− 10 TFP range 0.83, Syverson (2004)

aggregate shocks

ρA TFP, persistence 0.931 output persistence, BEA
σA TFP, standard deviation 0.007 output volatility, BEA
ρC investment-specific, persistence 0.906 labor productivity persistence, BLS
σC investment-specific, volatility 0.033 labor productivity volatility, BLS

Notes: The table reports model parameters and their respective targets or sources. “BLS” and
“BEA” stand for, respectively, the Bureau of Labor Statistics and the Bureau of Economic Analysis.
“RS (2010)” refers to Rios-Rull and Santaeulalia-Llopis (2010). Output and labor productivity are
measured, respectively, as real GDP and as output per worker in the non-farm business sector.

4.1 Calibration and model performance

All model parameters and their respective targets are in Table 1. The model period

is assumed to be one month. We set the discount factor to 0.996, resulting in an

annual interest rate of about 4 percent. The minimum value of the firm productivity

distribution is normalized to xmin = 1. The shape parameter λ is crucial for determining

the endogenous productivity distribution and we therefore set λ such that the degree

of productivity dispersion among active firms displays a 90 − 10 percentile range of

0.84, the midpoint between the empirical estimates in Syverson (2004).19

In order to pin down the separation rate δ, the value of non-market activity z, and

the average cost of capital C (which is assumed to be paid in units of output), we target

a steady state unemployment rate of 5.8 percent, a labor share of 68 percent, and a job

19Syverson (2004) documents that the 90− 10 percentile range of within industry TFP across 443
manufacturing industries lies between 0.65 and 0.97 depending on the measurement method. This
means that productivity of the ten percent most productive manufacturing firms is between 1.9 and
2.7 times as high as that of the bottom ten percent.
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finding probability of 45%. We use data from Rios-Rull and Santaeulalia-Llopis (2010)

who construct a measure of the labor share for the period 1954Q1 to 2004Q4. The

values for the unemployment rate, taken from the Bureau of Labor Statistics, and the

job finding probability, computed by Shimer (2005), are averages over this period. Note

that this calibration procedure does not take a stand on the value of the replacement

rate, for which there is little consensus in the literature. The replacement rate implied

by our calibration is about 35% of average wages (z = 0.32), which is similar to values

in e.g. Shimer (2005), Elsby and Michaels (2013), and Jung and Kuester (2015).

We consider two aggregate shocks: a TFP shock At and a shock to Ct. Since each

firm owns a unit of capital, the mass of existing firms also represents the capital stock

and the number of startups represents capital investment. Therefore, we assume that

capital costs are paid in units of output and we interpret shocks to Ct as investment-

specific technology shocks along the lines of e.g. Fisher (2006) and Lopez-Salido and

Michelacci (2007). Both aggregate shocks are assumed to follow an AR(1) process.20

The persistence and standard deviations of the two aggregate shocks are set such that

the model replicates the persistence and volatility of output and labor productivity in

the data.21 This calibration results in the investment-specific technology shocks being

about 4.5 times as large as TFP shocks, in line with empirical estimates for the U.S.

economy (see e.g. Justiniano and Primiceri, 2008).

Table 2 documents the business cycle statistics resulting from the above calibra-

tion. It shows that the model does relatively well in capturing both the volatility of

unemployment and the job finding probability relative to labor productivity, while the

variation of vacancies is about 40 percent of that observed in the data.22 The co-

movement of labor market variables in the model is consistent with the data, including

a strong Beveridge curve relationship.

4.2 Aggregate labor market dynamics

Figure 1 shows the IRFs of several model variables to expansionary one-standard-

deviation shocks to both TFP and investment-specific technology. Following a positive

20While the mean of the aggregate TFP shock is normalized to one, investment-specific technology
shocks have a mean equal to the steady state capital cost C.

21Labor productivity is measured as real output per worker in the non-farm business sector for the
period of 1954Q1 to 2004Q4.

22Note that wages are micro-founded without additional exogenous rigidity. However, as in Hall
(2005), one could allow for a certain degree of wage rigidity, which would not be in violation of the
bargaining sets of workers and firms, but which would result in greater labor market volatility.
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Table 2: Business cycle statistics

U.S. data model
Y u θu m Y u θu m

relative volatility 1.2 8.7 10.2 5.7 1.3 5.6 4.1 6.7

correlations
Y 1 −0.83 0.89 0.82 1 −0.63 0.51 0.61
u 1 −0.91 −0.91 1 −0.81 −0.96
θu 1 0.91 1 0.93

Notes: The table reports the standard deviations of labor market variables relative to that of labor
productivity (“relative volatility”) and the associated correlation matrix both for the U.S. data and
the model. The sample period considered runs from 1954Q1 to 2004Q4. Y refers to real GDP, u is
the number of unemployed, θu is the number of vacancies, and m is the job finding probability. All
data are taken from Rios-Rull and Santaeulalia-Llopis (2010), except for the job finding probability,
which is taken from Shimer (2005). The data are logged and HP filtered with a smoothing coefficient
of 1600. The simulated data from the model is treated in the same way and has the same sample
period length.

TFP shock (an increase in At), all employment relationships become more productive,

raising aggregate output and increasing the incentives to post vacancies (top and middle

right panels). This is reflected in an increase in the probability of finding a job and a

decrease in the probability of filling a vacancy (bottom panels) and it ultimately results

in a fall in unemployment (middle left panel).

The same pattern is true also for an expansionary investment-specific technology

shock (a decrease in Ct). However, this shock “only” makes new employment relation-

ships cheaper to start up; it does not increase the productivity of existing matches.

Therefore, the output response to this shock is muted (top right panel).

The above discussion shows that the aggregate labor market dynamics of the model

are similar to those of a standard Diamond-Mortensen-Pissarides model. However, our

model incorporates novel features – the competition and cohort effects – which deliver

richer dynamics. In particular, average labor productivity is not simply equal to the

aggregate TFP shock At, but it is influenced by the composition of the employment

pool with respect to firm-specific productivity levels and labor market conditions at

the time of hiring. Figure 2 shows the qualitatively different impact the two aggregate

shocks have on the dynamics of labor productivity.

While labor productivity increases and falls back to its steady state in a standard

fashion following an aggregate TFP shock, it initially falls in response to an expan-

sionary investment-specific technology shock. The reason for this initial drop is that

cheaper capital promotes hiring and increases the average productivity of new hires
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Figure 1: Impulse response functions of labor market variables
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Notes: Impulse response functions to expansionary one-standard-deviation shocks to aggregate TFP
(black solid line) and investment-specific technology (red dashed line). All variables are expressed in
percent deviations from their respective steady state values.
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Figure 2: Impulse response function of labor productivity
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Notes: Impulse response function to expansionary one-standard-deviation shocks to aggregate TFP
(black solid line) and investment-specific technology (red dashed line). Labor productivity is expressed
in percent deviations from its steady state values.

due to greater competition. However, the shock leaves unchanged the productivity of

existing matches, which dominate the economy initially. The increase in employment

combined with only a moderate rise in average match productivity results in aggregate

labor productivity falling in the first several quarters. Only after a sufficiently large

mass of new hires accumulates does aggregate labor productivity also rise.

Importantly, this initially negative response of labor productivity to investment-

specific shocks has been documented in existing studies (see e.g. Fisher, 2006; Canova,

Lopez-Salido, and Michelacci, 2013). The mechanism behind these patterns rests on the

presence of worker and firm cohort-effects driven by aggregate conditions at the time

of hiring. Such cohort effects have also been recently documented in the data. For

example, Sedláček and Sterk (2016) document that startups born during aggregate

downturns remain smaller than their counterparts born in booms even after several

years of existence. In addition, Oreopoulos, Heisz, and von Wachter (2012) show that

college graduates experience a 9 percent earnings loss when they graduate in a recession,

an effect largely due to unemployment “shocks” experienced that year. We find that

the above wage penalty is about 7 percent in our model.23

23The wage penalty described in Oreopoulos, Heisz, and von Wachter (2012) is based on defining a
recession as a period of time during which unemployment increases by 5 percentage points. Following
this methodology, we compute the model-predicted wage penalty by simulating our model and aver-
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4.3 Business cycle dynamics of the labor share

The labor share is counter-cyclical in the data. Moreover, Rios-Rull and Santaeulalia-

Llopis (2010) document that upon a positive TFP shock, the labor share initially drops

but then overshoots after about five quarters before eventually settling back to its

steady state.24 It is this overshooting behavior that has proven difficult to understand

through the lens of standard real business cycle and search and matching models.

In the calibrated version of our model, as in the data, the labor share is counter-

cyclical. The correlation coefficient of the (logged and HP-filtered) labor share with

aggregate output is −0.39, while it is −0.22 in the data. As in standard search and

matching models, this happens because wages are somewhat rigid. In our model, this

rigidity is not ad-hoc but micro-founded and stems from the fact that wages partly

reflect labor market conditions via competition at the time of hiring. In addition to

being counter-cyclical, the labor share in the model also lags output, as in the data.

The correlation coefficient peaks for an output lead of four quarters with a value of 0.4

both in the model and the data.

Importantly, the model can account not only for the counter-cyclicality of the labor

share but also its overshooting behavior. Figure 3 shows that the labor share drops

upon impact of a positive TFP shock, but then rises quickly above its steady state

level after about six quarters, i.e. the labor share overshoots. The timing of the

overshooting behavior is almost identical to that in the data. Moreover, the magnitude

of the response is also realistic, with the labor share dropping to about −0.2 percent

on impact and peaking at about 0.2 percent in the data.25

4.3.1 Labor share for new hires and existing matches

The reason behind the labor share dynamics lies in the changing composition of

the employment pool with respect to aggregate conditions at the time of hiring. To

understand the labor share dynamics, we consider separately the roles of new hires and

existing matches, i.e. those hired after and before the shock hit the economy.

Suppose that a positive TFP shock hits the economy in period T . Let αt,T ≡∑t−T
a=0 υ̃t,t−a, the total output share of new hires (i.e. those hired post-shock). For new

aging the wage differential of newly hired workers (compared to the aggregate) in periods when the
unemployment rate rises by 5 percentage points.

24All empirical properties of the labor share are taken from Rios-Rull and Santaeulalia-Llopis (2010).
25The unconditional volatility of the labor share relative to that of labor productivity is somewhat

larger in the model than in the data (0.79 in the model compared to 0.52 in the data).
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Figure 3: Impulse response function of the labor share
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expressed as percent deviations from steady state.

hires, we can define υ̂t,τ ≡ υ̃t,τ/αt,T , the output share of cohort τ among new hires.

For existing matches (i.e. those hired pre-shock), we can define ῡt,τ ≡ υ̃t,τ/(1 − αt,T ),

the output share of cohort τ among existing matches. Rewriting (9), we have

sL,t = αt,T

t−T∑
a=0

υ̂t,t−asL,t,t−a︸ ︷︷ ︸
labor share of new hires

+(1− αt,T )
∞∑

a=t−T+1

ῡt,t−asL,t,t−a︸ ︷︷ ︸
labor share of existing workers

. (39)

That is, the aggregate labor share is a weighted average of the labor shares for

new hires and existing matches, which are themselves weighted averages of the cohort-

specific labor shares sL,t,τ . The output share of new hires αt,T measures the relative

strength of the effects of a shock on new hires versus existing matches.

Since x0τ = 1 in our calibration, we can express the labor share for cohort τ as:

sL,t,τ = 1− λ−
(

1− bτ
At

)
µ(θτ )

p(θτ )
. (40)

For any given cohort of τ < T of existing matches (pre-shock), all terms except for

At are determined by aggregate conditions at the time of hiring τ , i.e. prior to the

realization of the shock. Therefore, the impact of the shock is determined solely by the

direct effect of At through the term bτ/At and the labor share of existing workers falls.

For any given cohort τ ≥ T of new hires (post-shock), the effect of the TFP shock
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is complex. For example, consider the effect on the labor share of matches created

shortly after the shock hits. When A increases, there is a negative direct effect on

labor share, as for existing matches. However, there are also indirect effects through the

reservation wage bτ and the market tightness θτ , both of which increase. Intuitively, the

competition effect through θτ on labor share is positive, since µ(θ)/p(θ) is decreasing

in θ. However, the net effect on labor share is ambiguous. The comparative static

result in Proposition 5 suggests that the labor share will be increasing in a positive

TFP shock provided that the elasticity of the reservation wage with respect to A is

greater than one. Since this is true under our calibration (εb∗(A) = 1.41), we expect

to see the labor share for new hires increase in response to a positive TFP shock.

Figure 4 decomposes the IRF for the aggregate labor share (top left panel) into its

three determinants: the labor share for new hires (bottom left panel); the labor share

for existing hires (bottom right panel); and the output share of new hires (top right

panel). The two opposing effects on new and existing hires are key for understanding

the aggregate labor share dynamics, and the output share of new hires indexes the

relative strength of these two effects.

In response to a positive TFP shock, the aggregate labor share initially drops (top

left panel). This is because existing matches, which experience an immediate fall

in the labor share (bottom right panel), initially dominate the economy: the output

share of new hires αt,T is low (top right panel). In contrast to existing matches, workers

hired after the TFP shock are hired in an environment of stronger competition and

they therefore experience an increase in their labor share (bottom left panel). As the

share of workers hired under stronger competition αt,T increases (top right panel), the

aggregate labor share rises and eventually overshoots its steady state level.26

Wage elasticities. The above mechanism rests on the model prediction that wages of

newly hired workers are more flexible than those in existing employment relationships.

This prediction is consistent with existing studies (see e.g. Bils, 1985; Haefke, Sonntag,

and van Rens, 2013).27 To investigate whether this mechanism is also quantitatively

reasonable, we follow the methodology of the above studies and compute the wage

26The hump-shaped response stems from the fact that wages of new hires not only rise relatively
more than output, but they are also somewhat more persistent.

27Recently, Gertler, Huckfeldt, and Trigari (2016) find that distinguishing job-to-job flows from
unemployment hires may be important. While the presented model abstracts from job-to-job flows, it
would be interesting to analyze to what extent the observed labor share dynamics are driven by wage
changes of different groups of workers.
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Figure 4: Impulse response function for new hires and existing matches
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elasticity with respect to aggregate labor productivity in the model.28

The model predicts that while the wage elasticity for all workers is about one half,

ηall = 0.5, that of new hires is around 1.5 times higher, ηnew = 0.7. These values

are consistent with the range of estimates found in existing studies.29 Therefore, the

micro-founded distinction between new and existing matches – which is key to the

model’s dynamics – is not only qualitatively but also quantitatively plausible.

28See the Appendix for details on the estimation procedure.
29Depending on how wages and productivity are measured, estimates of ηall range between 0.19 and

0.43, while estimates of ηnew vary between 0.54 and 1.07 (see Haefke, Sonntag, and van Rens, 2013,
for detailed empirical robustness exercises).
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Figure 5: Time path of the labor share: data and model
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Notes: The labor share data is taken from Rios-Rull and Santaeulalia-Llopis (2010), HP-filtered. The
model-predicted labor share is constructed based on estimating the aggregate TFP and investment-
specific shocks using the Kalman filter and data on real GDP and the unemployment rate. Both
variables are expressed in percentage point deviations from their respective trends.

4.4 Accounting for the time path of the U.S. labor share

We now investigate to what extent the model is able to account for the time path

of the U.S. labor share during the period 1954Q1-2004Q4. To do this, we use our

calibrated model to estimate the underlying time path of the two aggregate shocks

using the Kalman filter. Specifically, we estimate the shocks using data on real GDP

and the unemployment rate (logged and HP-filtered).30

Figure 5 depicts the observed (HP-filtered) fluctuations in the labor share together

with those predicted by the benchmark model. While the model-predicted labor share

is somewhat more volatile, as discussed earlier, the model does very well in capturing

the business cycle fluctuations of the labor share throughout the sample period (the

correlation coefficient between the two time series is 0.55).

4.4.1 Switching off competition and cohort effects

One of the key features of our model is the persistent effect on both production

and wages of the degree of firm competition at the time of hiring. This single feature

30The Appendix provides further details on the estimation and shows that the time paths of other
model variables, not used in the estimation, closely follow those observed in the data.
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leads to both “competition effects” and “cohort effects”. To illustrate the importance

of these novel aspects of our model in accounting for the dynamics of the labor share,

we consider what happens when this key feature is “switched off”.

In particular, we consider a “counter-factual” alternative model which is not micro-

founded, but which retains the steady state equilibrium conditions of our benchmark

economy. Specifically, we fix the permanent component of match productivity for all

matches to its steady state value, p(θss). This eliminates the effect on production of

firm competition at the time of hiring. We also fix the share of bilateral matches – a

measure of the degree of firm competition – to its steady state value, µ(θss), and assume

that the wage paid in bilateral matches is updated each period. These assumptions

eliminate the persistent effect on wages of firm competition at the time of hiring, while

keeping the basic wage structure intact. The rest of the benchmark model, including

all equilibrium conditions and aggregate shocks, remains the same.

This counter-factual model is similar in spirit to standard Diamond-Mortensen-

Pissarides (DMP) model. In such models, there is no dependence on the degree of firm

competition at the time of hiring and therefore no ”competition” or ”cohort” effects.

In such models, the share of bilateral meetings is constant (since all meetings are

bilateral) and the average match productivity does not vary with the market tightness

θt. Instead, the output of all employment relationships fluctuates only with aggregate

TFP shocks, and wages depend only on current labor market conditions (and TFP).

All of these DMP-style features are captured in the counter-factual model, while

retaining all the equilibrium conditions of our benchmark economy, including its basic

wage structure. This experiment therefore gives us a sense of how the competition

and cohort effects – key to this model but absent from standard DMP models – play

a crucial role in accounting for the cyclical fluctuations in the labor share.

In the counter-factual model, the aggregate labor share scL,t can be expressed as:

scL,t = 1− λ−
(

1− bct
At

)
µ(θss)

p(θss)
, (41)

where bct is the counter-factual wage paid in bilateral meetings at time t.31 Note

that there is no distinction between new and existing hires. All “cohorts” face the

same wages and labor share (i.e. no cohort effects). Also, neither the average match

productivity nor the share of bilateral meetings fluctuate over the business cycle (i.e.

31In equation (41), we have x0t = 1, since under our calibration the cut-off productivity for firm
participation xct is always below xmin = 1.
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no competition effects). The aggregate labor share still fluctuates, however, since it

directly depends on aggregate TFP shocks At and on fluctuations in the counter-factual

reservation wage bct . The latter varies over time because it depends on the values of

unemployment and employment, and the job finding probability, all of which fluctuate

endogenously in the counter-factual economy.

As with the benchmark economy, we use this counter-factual model to estimate the

underlying aggregate TFP and investment-specific shocks using data on real GDP and

unemployment. In contrast to the benchmark economy, however, the counter-factual

model fails to account for the cyclical fluctuations in the labor share. In fact, the

labor share predicted by the counter-factual model is essentially uncorrelated with its

empirical counterpart (correlation coefficient of 0.01). The novel feature of our model –

namely, the direct competition between firms to hire workers and the resulting cohort

effects – is therefore crucial for understanding the cyclical fluctuations of the U.S. labor

share, both qualitatively and quantitatively.

5 Conclusion

While the relative constancy of factor shares has been a stylized fact in macroeco-

nomics for decades, factor shares are not constant in the data. Importantly, movements

in the labor share systematically respond to TFP shocks and such movements have im-

portant implications for aggregate dynamics (Rios-Rull and Santaeulalia-Llopis, 2010).

This paper contributes to our understanding of the business cycle properties of the labor

share. We develop a tractable dynamic search and matching model in which heteroge-

neous firms compete to hire workers. Such competition endogenizes both the aggregate

production technology and the division of output between workers and firms. We show

that the model can account well for both the counter-cyclicality of the U.S. labor share

and its overshooting pattern following TFP shocks, as well as its time path.

While the focus of this paper is on understanding the labor share, the model makes

a host of other predictions regarding important issues in macroeconomics. For example,

how do fluctuations in the degree of firm productivity dispersion affect labor produc-

tivity, unemployment, and the wage distribution? The model provides an integrated

framework for addressing such questions. Moreover, the vintage structure of the model

provides a way of studying cohort effects. In particular, it directs attention to the

composition of the employment pool with respect to labor market conditions at the
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time of hiring. Given the existing evidence on firm and worker cohort effects, it would

be interesting to use the model to examine the persistent scarring effects of entering

the labor market during a downturn. These questions are left for future research.
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